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Preface 

Learning solid-state physics requires a certain degree of maturity, since it involves 
tying together diverse concepts from many areas of physics. The objective is to 
understand, in a basic way, how solid materials behave. To do this one needs both 
a good physical and mathematical background. One definition of solid-state 
physics is that it is the study of the physical (e.g. the electrical, dielectric, 
magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. 
In one sense, solid-state physics is more like chemistry than some other branches 
of physics because it focuses on common properties of large classes of materials. 
It is typical that solid-state physics emphasizes how physical properties link to the 
electronic structure. In this book we will emphasize crystalline solids (which are 
periodic 3D arrays of atoms). 

We have retained the term solid-state physics, even though condensed-matter 
physics is more commonly used. Condensed-matter physics includes liquids and 
non -crystalline solids such as glass, about which we have little to say. We have also 
included only a little material concerning soft condensed matter (which includes 
polymers, membranes and liquid crystals – it also includes wood and gelatins). 

Modern solid-state physics came of age in the late 1930s and early 1940s (see 
Seitz [82]), and had its most extensive expansion with the development of the 
transistor, integrated circuits, and microelectronics. Most of microelectronics, 
however, is limited to the properties of inhomogeneously doped semiconductors. 
Solid-state physics includes many other areas of course; among the largest of these 
are ferromagnetic materials, and superconductors. Just a little less than half of all 
working physicists are engaged in condensed matter work, including solid-state. 

One earlier version of this book was first published 30 years ago (J.D. 
Patterson, Introduction to the Theory of Solid State Physics, Addison-Wesley 
Publishing Company, Reading, Massachusetts, 1971, copyright reassigned to JDP 
13 December, 1977), and bringing out a new modernized and expanded version 
has been a prodigious task. Sticking to the original idea of presenting basics has 
meant that the early parts are relatively unchanged (although they contain new and 
reworked material), dealing as they do with structure (Chap. 1), phonons (2), 
electrons (3), and interactions (4). Of course, the scope of solid-state physics has 
greatly expanded during the past 30 years. Consequently, separate chapters are 
now devoted to metals and the Fermi surface (5), semiconductors (6), magnetism 
(7, expanded and reorganized), superconductors (8), dielectrics and ferroelectrics 
(9), optical properties (10), defects (11), and a final chapter (12) that includes 
surfaces, and brief mention of modern topics (nanostructures, the quantum Hall 
effect, carbon nanotubes, amorphous materials, and soft condensed matter). The 
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reference list has been brought up to date, and several relevant topics are further 
discussed in the appendices. The table of contents can be consulted for a full list 
of what is now included. 

The fact that one of us (JDP) has taught solid-state physics over the course of 
this 30 years has helped define the scope of this book, which is intended as  
a textbook. Like golf, teaching is a humbling experience. One finds not only that 
the students don’t understand as much as one hopes, but one constantly discovers 
limits to his own understanding. We hope this book will help students to begin  
a life-long learning experience, for only in that way can they gain a deep 
understanding of solid-state physics. 

Discoveries continue in solid-state physics. Some of the more obvious ones 
during the last thirty years are: quasicrystals, the quantum Hall effect (both integer 
and fractional – where one must finally confront new aspects of electron–electron 
interactions), high-temperature superconductivity, and heavy fermions. We have 
included these, at least to some extent, as well as several others. New experimen-
tal techniques, such as scanning probe microscopy, LEED, and EXAFS, among 
others have revolutionized the study of solids. Since this is an introductory book 
on solid-state theory, we have only included brief summaries of these techniques. 
New ways of growing crystals and new “designer” materials on the nanophysics 
scale (superlattices, quantum dots, etc.) have also kept solid-state physics vibrant, 
and we have introduced these topics. There have also been numerous areas in 
which applications have played a driving role. These include semiconductor 
technology, spin-polarized tunneling, and giant magnetoresistance (GMR). We 
have at least briefly discussed these as well as other topics. 

Greatly increased computing power has allowed many ab initio methods of 
calculations to become practical. Most of these require specialized discussions 
beyond the scope of this book. However, we continue to discuss pseudopotentials, 
and have added a Section on density functional techniques. 

Problems are given at the end of each chapter (many new problems have been 
added). Occasionally they are quite long and have different approximate solutions. 
This may be frustrating, but it appears to be necessary to work problems in solid-
state physics in order to gain a physical feeling for the subject. In this respect, 
solid-state physics is no different from many other branches of physics. 

We should discuss what level of students for which this book is intended. One 
could perhaps more appropriately ask what degree of maturity of the students is 
assumed? Obviously, some introduction to quantum mechanics, solid-state 
physics, thermodynamics, statistical mechanics, mathematical physics, as well as 
basic mechanics and electrodynamics is necessary. In our experience, this is most 
commonly encountered in graduate students, although certain mature under-
graduates will be able to handle much of the material in this book. 

Although it is well to briefly mention a wide variety of topics, so that students 
will not be “blind sided” later, and we have done this in places, in general it is 
better to understand one topic relatively completely, than to scan over several. We 
caution professors to be realistic as to what their students can really grasp. If the 
students have a good start, they have their whole careers to fill in the details. 
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The method of presentation of the topics draws heavily on many other solid-
state books listed in the bibliography. Acknowledgment due the authors of these 
books is made here. The selection of topics was also influenced by discussion with 
colleagues and former teachers, some of whom are mentioned later. 

We think that solid-state physics abundantly proves that more is different, as 
has been attributed to P. W. Anderson. There really are emergent properties at 
higher levels of complexity. Seeking them, including applications, is what keeps 
solid-state physics alive. 

In this day and age, no one book can hope to cover all of solid-state physics. 
We would like to particularly single out the following books for reference and or 
further study. Terms in brackets refer to references listed in the Bibliography. 

1. Kittel – 7th edition – remains unsurpassed for what it does [23, 1996]. Also 
Kittel’s book on advanced solid-state physics [60, 1963] is very good. 

2. Ashcroft and Mermin, Solid State Physics – has some of the best explanations 
of many topics I have found anywhere [21, 1976]. 

3. Jones and March – a comprehensive two-volume work [22, 1973]. 

4. J.M. Ziman – many extremely clear physical explanation [25, 1972], see also 
Ziman's classic Electrons and Phonons [99, 1960]. 

5. O. Madelung, Introduction to Solid-State Theory – Complete with a very trans-
parent and physical presentation [4.25]. 

6. M.P. Marder, Condensed Matter Physics – A modern presentation, including 
modern density functional methods with references [3.29]. 

7. P. Phillips, Advanced Solid State Physics – A modern Frontiers in Physics 
book, bearing the imprimatur of David Pines [A.20]. 

8. Dalven – a good start on applied solid-state physics [32, 1990]. 

9. Also Oxford University Press has recently put out a “Master Series in Con-
densed Matter Physics.” There are six books which we recommend.  
a) Martin T. Dove, Structure and Dynamics – An atomic view of Materials 
 [2.14]. 
b) John Singleton, Band Theory and Electronic Properties of Solids [3.46].  
c) Mark Fox, Optical Properties of Solids [10.12].  
d) Stephen Blundell, Magnetism in Condensed Matter [7.9].  
e) James F. Annett, Superconductivity, Superfluids, and Condensates [8.3].  
f) Richard A. L. Jones, Soft Condensed Matter [12.30]. 

A word about notation is in order. We have mostly used SI units (although 
gaussian is occasionally used when convenient); thus E is the electric field, D is 
the electric displacement vector, P is the polarization vector, H is the magnetic 
field, B is the magnetic induction, and M is the magnetization. Note that the above 
quantities are in boldface. The boldface notation is used to indicate a vector. The 
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magnitude of a vector V is denoted by V. In the SI system μ is the permeability (μ 
also represents other quantities). μ0 is the permeability of free space, ε is the 
permittivity, and ε0 the permittivity of free space. In this notation μ0 should not be 
confused with μB, which is the Bohr magneton [= |e| =/2m, where e = magnitude 
of electronic charge (i.e. e means +|e| unless otherwise noted), = = Planck’s 
constant divided by 2π, and m = electronic mass]. We generally prefer to write 
∫Ad3r or ∫Adr instead of ∫A dx dy dz, but they all mean the same thing. Both 〈i|H|j〉 
and (i|H|j) are used for the matrix elements of an operator H. Both mean ∫ψ*Hψdτ 
where the integral over τ means to integrate over whatever space is appropriate 
(e.g., it could mean an integral over real space and a sum over spin space). By ∑  
a summation is indicated and by ∏ a product. The Kronecker delta δij is 1 when  
i = j and zero when i ≠ j. We have not used covariant and contravariant spaces; 
thus δij and δi

j, for example, mean the same thing. We have labeled sections by A 
for advanced, B for basic, and EE for material that might be especially interesting 
for electrical engineers, and similarly MS for materials science, and MET for 
metallurgy. Also by [number], we refer to a reference at the end of the book. 

There are too many colleagues to thank, to include a complete list. JDP wishes 
to specifically thank several. A beautifully prepared solid-state course by 
Professor W. R Wright at the University of Kansas gave him his first exposure to 
a logical presentation of solid-state physics, while also at Kansas, Dr. R.J. Friauf, 
was very helpful in introducing JDP to the solid-state. Discussions with Dr. R.D. 
Redin, Dr. R.G. Morris, Dr. D.C. Hopkins, Dr. J. Weyland, Dr. R.C. Weger and 
others who were at the South Dakota School of Mines and Technology were 
always useful. Sabbaticals were spent at Notre Dame and the University of 
Nebraska, where working with Dr. G.L. Jones (Notre Dame) and D.J. Sellmyer 
(Nebraska) deepened JDP’s understanding. At the Florida Institute of Technology, 
Drs. J. Burns, and J. Mantovani have read parts of this book, and discussions with 
Dr. R. Raffaelle and Dr. J. Blatt were useful. Over the course of JDP’s career,  
a variety of summer jobs were held that bore on solid-state physics; these included 
positions at Hughes Semiconductor Laboratory, North American Science Center, 
Argonne National Laboratory, Ames Laboratory of Iowa State University, the 
Federal University of Pernambuco in Recife, Brazil, Sandia National Laboratory, 
and the Marshal Space Flight Center. Dr. P. Richards of Sandia, and Dr. S.L. 
Lehoczky of Marshall, were particularly helpful to JDP. Brief, but very pithy 
conversations of JDP with Dr. M. L. Cohen of the University of Califonia/ 
Berkeley, over the years, have also been uncommonly useful. 

Dr. B.C. Bailey would like particularly to thank Drs. J. Burns and J. Blatt for 
the many years of academic preparation, mentorship, and care they provided at 
Florida Institute of Technology. A special thanks to Dr. J.D. Patterson who, while 
Physics Department Head at Florida Institute of Technology, made a conscious 
decision to take on a coauthor for this extraordinary project. 

All mistakes, misconceptions and failures to communicate ideas are our own. 
No doubt some sign errors, misprints, incorrect shading of meanings, and perhaps 
more serious errors have crept in, but hopefully their frequency decreases with 
their gravity. 
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Most of the figures, for the first version of this book, were prepared in 
preliminary form by Mr. R.F. Thomas. However, for this book, the figures are 
either new or reworked by the coauthor (BCB). 

We gratefully acknowledge the cooperation and kind support of Dr. C. 
Asheron, Ms. E. Sauer, and Ms. A. Duhm of Springer. Finally, and most 
importantly, JDP would like to note that without the constant encouragement and 
patience of his wife Marluce, this book would never have been completed. 

 
 

 J.D. Patterson, Rapid City, South Dakota 
October 2005 B.C. Bailey, Cape Canaveral, Florida 
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1  Crystal Binding and Structure 

It has been argued that solid-state physics was born, as a separate field, with the 
publication, in 1940, of Fredrick Seitz’s book, Modern Theory of Solids [82]. In 
that book parts of many fields such as metallurgy, crystallography, magnetism, 
and electronic conduction in solids were in a sense coalesced into the new field of 
solid-state physics. About twenty years later, the term condensed-matter physics, 
which included the solid-state but also discussed liquids and related topics, gained 
prominent usage (see, e.g., Chaikin and Lubensky [26]). In this book we will fo-
cus on the traditional topics of solid-state physics, but particularly in the last chap-
ter consider also some more general areas. The term “solid-state” is often re-
stricted to mean only crystalline (periodic) materials. However, we will also 
consider, at least briefly, amorphous solids (e.g., glass that is sometimes called 
a supercooled viscous liquid),1 as well as liquid crystals, something about poly-
mers, and other aspects of a new subfield that has come to be called soft con-
densed-matter physics (see Chap. 12). 

The physical definition of a solid has several ingredients. We start by defining 
a solid as a large collection (of the order of Avogadro’s number) of atoms that at-
tract one another so as to confine the atoms to a definite volume of space. Addi-
tionally, in this chapter, the term solid will mostly be restricted to crystalline 
solids. A crystalline solid is a material whose atoms have a regular arrangement 
that exhibits translational symmetry. The exact meaning of translational symmetry 
will be given in Sect. 1.2.2. When we say that the atoms have a regular arrange-
ment, what we mean is that the equilibrium positions of the atoms have a regular 
arrangement. At any given temperature, the atoms may vibrate with small ampli-
tudes about fixed equilibrium positions. For the most part, we will discuss only 
perfect crystalline solids, but defects will be considered later in Chap. 11. 

Elements form solids because for some range of temperature and pressure, 
a solid has less free energy than other states of matter. It is generally supposed that 
at low enough temperature and with suitable external pressure (helium requires 
external pressure to solidify) everything becomes a solid. No one has ever proved 
that this must happen. We cannot, in general, prove from first principles that the 
crystalline state is the lowest free-energy state. 

                                                           
1 The viscosity of glass is typically greater than 1013 poise and it is disordered. 
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P.W. Anderson has made the point2 that just because a solid is complex does 
not mean the study of solids is less basic than other areas of physics. More is dif-
ferent. For example, crystalline symmetry, perhaps the most important property 
discussed in this book, cannot be understood by considering only a single atom or 
molecule. It is an emergent property at a higher level of complexity. Many other 
examples of emergent properties will be discussed as the topics of this book are 
elaborated. 

The goal of this chapter is three-fold. All three parts will help to define the uni-
verse of crystalline solids. We start by discussing why solids form (the binding), 
then we exhibit how they bind together (their symmetries and crystal structure), 
and finally we describe one way we can experimentally determine their structure 
(X-rays). 

Section 1.1 is concerned with chemical bonding. There are approximately four 
different forms of bonds. A bond in an actual crystal may be predominantly of one 
type and still show characteristics related to others, and there is really no sharp 
separation between the types of bonds. 

1.1  Classification of Solids by Binding Forces (B) 

A complete discussion of crystal binding cannot be given this early because it de-
pends in an essential way on the electronic structure of the solid. In this Section, 
we merely hope to make the reader believe that it is not unreasonable for atoms to 
bind themselves into solids. 

1.1.1  Molecular Crystals and the van der Waals Forces (B) 

Examples of molecular crystals are crystals formed by nitrogen (N2) and rare-gas 
crystals formed by argon (Ar). Molecular crystals consist of chemically inert at-
oms (atoms with a rare-gas electronic configuration) or chemically inert molecules 
(neutral molecules that have little or no affinity for adding or sharing additional 
electrons and that have affinity for the electrons already within the molecule). We 
shall call such atoms or molecules chemically saturated units. These interact 
weakly, and therefore their interaction can be treated by quantum-mechanical per-
turbation theory. 

The interaction between chemically saturated units is described by the van der 
Waals forces. Quantum mechanics describes these forces as being due to correla-
tions in the fluctuating distributions of charge on the chemically saturated units. 
The appearance of virtual excited states causes transitory dipole moments to ap-
pear on adjacent atoms, and if these dipole moments have the right directions, 
then the atoms can be attracted to one another. The quantum-mechanical descrip-
tion of these forces is discussed in more detail in the example below. The van der 
                                                           
2 See Anderson [1.1]. 
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Waals forces are weak, short-range forces, and hence molecular crystals are char-
acterized by low melting and boiling points. The forces in molecular crystals are 
almost central forces (central forces act along a line joining the atoms), and they 
make efficient use of their binding in close-packed crystal structures. However, 
the force between two atoms is somewhat changed by bringing up a third atom 
(i.e. the van der Waals forces are not exactly two-body forces). We should men-
tion that there is also a repulsive force that keeps the lattice from collapsing. This 
force is similar to the repulsive force for ionic crystals that is discussed in the next 
Section. A sketch of the interatomic potential energy (including the contributions 
from the van der Waals forces and repulsive forces) is shown in Fig. 1.1. 

A relatively simple model [14, p. 438] that gives a qualitative feeling for the 
nature of the van der Waals forces consists of two one-dimensional harmonic os-
cillators separated by a distance R (see Fig. 1.2). Each oscillator is electrically 
neutral, but has a time-varying electric dipole moment caused by a fixed +e 
charge and a vibrating –e charge that vibrates along a line joining the two oscilla-
tors. The displacements from equilibrium of the –e charges are labeled d1 and d2. 
When di = 0, the –e charges will be assumed to be separated exactly by the dis-
tance R. Each charge has a mass M, a momentum Pi, and hence a kinetic energy 
Pi

2/2M. 
The spring constant for each charge will be denoted by k and hence each oscil-

lator will have a potential energy kdi
2/2. There will also be a Coulomb coupling 

energy between the two oscillators. We shall neglect the interaction between the 
−e and the +e charges on the same oscillator. This is not necessarily physically 
reasonable. It is just the way we choose to build our model. The attraction be-
tween these charges is taken care of by the spring. 

 

r

V(r) 

0 

 
Fig. 1.1. The interatomic potential V(r) of a rare-gas crystal. The interatomic spacing is r 
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Fig. 1.2. Simple model for the van der Waals forces 

The total energy of the vibrating dipoles may be written 
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where ε0 is the permittivity of free space. In (1.1) and throughout this book for the 
most part, mks units are used (see Appendix A). Assuming that R >> d and using 
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if |η| << 1, we find a simplified form for (1.1): 
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If there were no coupling term, (1.3) would just be the energy of two independent 
oscillators each with frequency (in radians per second) 

 Mk=0ω . (1.4) 

The coupling splits this single frequency into two frequencies that are slightly 
displaced (or alternatively, the coupling acts as a perturbation that removes a two-
fold degeneracy). 

By defining new coordinates (making a normal coordinate transformation) it is 
easily possible to find these two frequencies. We define 
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By use of this transformation, the energy of the two oscillators can be written 
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Note that (1.6) is just the energy of two uncoupled harmonic oscillators with fre-
quencies ω+ and ω− given by 

 ⎟
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⎜
⎝
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±=± 3

0

2

2
1

R
ek

M πε
ω . (1.7) 

The lowest possible quantum-mechanical energy of this system is the zero-point 
energy given by 

 )(
2 −+ +≅ ωω=E , (1.8) 

where = is Planck’s constant divided by 2π. 
A more instructive form for the ground-state energy is obtained by making an 

assumption that brings a little more physics into the model. The elastic restoring 
force should be of the same order of magnitude as the Coulomb forces so that 

 ikd
R

e ≅2
0

2

4πε
. 

This expression can be cast into the form 

 k
d
R

R
e

i
≅3

0

2

4πε
. 

It has already been assumed that R >> di so that the above implies 
e2/4πε0R3 << k. Combining this last inequality with (1.7), making an obvious ex-
pansion of the square root, and combining the result with (1.8), one readily finds 
for the approximate ground-state energy 

 )/1( 6
0 RCE −≅ ω= , (1.9) 

where 

 2
0

22

4

32 επ k
eC = . 

From (1.9), the additional energy due to coupling is approximately −Cћω0/R6. 
The negative sign tells us that the two dipoles attract each other. The R−6 tells us 
that the attractive force (proportional to the gradient of energy) is an inverse sev-
enth power force. This is a short-range force. Note that without the quantum-
mechanical zero-point energy (which one can think of as arising from the uncer-
tainty principle) there would be no binding (at least in this simple model). 
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While this model gives one a useful picture of the van der Waals forces, it is 
only qualitative because for real solids: 

1. More than one dimension must be considered, 

2. The binding of electrons is not a harmonic oscillator binding, and 

3. The approximation R >> d (or its analog) is not well satisfied. 

4. In addition, due to overlap of the core wave functions and the Pauli principle 
there is a repulsive force (often modeled with an R–12 potential). The totality of 
R–12 linearly combined with the –R–6 attraction is called a Lennard–Jones po-
tential. 

1.1.2  Ionic Crystals and Born–Mayer Theory (B) 

Examples of ionic crystals are sodium chloride (NaCl) and lithium fluoride (LiF). 
Ionic crystals also consist of chemically saturated units (the ions that form their 
basic units are in rare-gas configurations). The ionic bond is due mostly to Cou-
lomb attractions, but there must be a repulsive contribution to prevent the lattice 
from collapsing. The Coulomb attraction is easily understood from an electron-
transfer point of view. For example, we view LiF as composed of Li+(1s2) and 
F−(1s22s22p6), using the usual notation for configuration of electrons. It requires 
about one electron volt of energy to transfer the electron, but this energy is more 
than compensated by the energy produced by the Coulomb attraction of the 
charged ions. In general, alkali and halogen atoms bind as singly charged ions. 
The core repulsion between the ions is due to an overlapping of electron clouds 
(as constrained by the Pauli principle). 

Since the Coulomb forces of attraction are strong, long-range, nearly two-body, 
central forces, ionic crystals are characterized by close packing and rather tight 
binding. These crystals also show good ionic conductivity at high temperatures, 
good cleavage, and strong infrared absorption. 

A good description of both the attractive and repulsive aspects of the ionic 
bond is provided by the semi-empirical theory due to Born and Mayer. To de-
scribe this theory, we will need a picture of an ionic crystal such as NaCl. NaCl-
like crystals are composed of stacked planes, similar to the plane in Fig. 1.3. The 
theory below will be valid only for ionic crystals that have the same structure as 
NaCl. 

Let N be the number of positive or negative ions. Let rij (a symbol in boldface 
type means a vector quantity) be the vector connecting ions i and j so that |rij| is 
the distance between ions i and j. Let Eij be (+1) if the i and j ions have the same 
signs and (–1) if the i and j ions have opposite signs. With this notation the poten-
tial energy of ion i is given by 

 ∑ ≠= )( all
0

2

||4ij
ij

iji
eEU

rπε
, (1.10) 
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Fig. 1.3. NaCl-like ionic crystals 

where e is, of course, the magnitude of the charge on any ion. For the whole crys-
tal, the total potential energy is U = NUi. If N1, N2 and N3 are integers, and a is the 
distance between adjacent positive and negative ions, then (1.10) can be written as 
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In (1.11), the term N1 = 0, N2 = 0, and N3 = 0 is omitted (this is what the prime 
on the sum means). If we assume that the lattice is almost infinite, the Ni in (1.11) 
can be summed over an infinite range. The result for the total Coulomb potential 
energy is 
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is called the Madelung constant for a NaCl-type lattice. Evaluation of (1.13) yields 
MNaCl = 1.7476. The value for M depends only on geometrical arrangements. The 
series for M given by (1.13) is very slowly converging. Special techniques are 
usually used to obtain good results [46]. 

As already mentioned, the stability of the lattice requires a repulsive potential, 
and hence a repulsive potential energy. Quantum mechanics suggests (basically 
from the Pauli principle) that the form of this repulsive potential energy between 
ions i and j is 

 ⎟
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where Xij and Rij depend, as indicated, on the pair of ions labeled by i and j. 
“Common sense” suggests that the repulsion be of short-range. In fact, one usually 
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assumes that only nearest-neighbor repulsive interactions need be considered. 
There are six nearest neighbors for each ion, so that the total repulsive potential 
energy is 

 )/exp(6 RaNXU R −= . (1.15) 

This usually amounts to only about 10% of the magnitude of the total cohesive 
energy. In (1.15), Xij and Rij are assumed to be the same for all six interactions 
(and equal to the X and R). That this should be so is easily seen by symmetry. 

Combining the above, we have for the total potential energy for the lattice 
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The cohesive energy for free ions equals U plus the kinetic energy of the ions 
in the solid. However, the magnitude of the kinetic energy of the ions (especially 
at low temperature) is much smaller than U, and so we simply use U in our com-
putations of the cohesive energy. Even if we refer U to zero temperature, there 
would be, however, a small correction due to zero-point motion. In addition, we 
have neglected a very weak attraction due to the van der Waals forces. 

Equation (1.16) shows that the Born–Mayer theory is a two-parameter theory. 
Certain thermodynamic considerations are needed to see how to feed in the results 
of experiment. 

The combined first and second laws for reversible processes is 

 VpUST d   d  d += , (1.17) 

where S is the entropy, U is the internal energy, p is the pressure, V is the volume, 
and T is the temperature. We want to derive an expression for the isothermal com-
pressibility k that is defined by 
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The isothermal compressibility is not very sensitive to temperature, so we will 
evaluate k for T = 0. Combining (1.17) and (1.18) at T = 0, we obtain 
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There is one more relationship between R, X, and experiment. At the equilib-
rium spacing a = A (determined by experiment using X-rays), there must be no net 
force on an ion so that 
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Thus, a measurement of the compressibility and the lattice constant serves to fix 
the two parameters R and X. When we know R and X, it is possible to give a theo-
retical value for the cohesive energy per molecule (U/N). This quantity can also be 
independently measured by the Born–Haber cycle [46].3 Comparing these two 
quantities gives a measure of the accuracy of the Born–Mayer theory. Table 1.1 
shows that the Born–Mayer theory gives a good estimate of the cohesive energy. 
(For some types of complex solid-state calculations, an accuracy of 10 to 20% can 
be achieved.) 

Table 1.1. Cohesive energy in kcal mole–1 
Solid Born–Mayer theory Experiment 

LiCl 196.3 201.5 
NaCl 182.0 184.7 
NaBr 172.7 175.9 
NaI 159.3 166.3 

Adapted from Born M and Huang K, Dynamical 
Theory of Crystal Lattices, selected parts of Table 9 
(p.26) Clarendon Press, Oxford, 1954. By permission 
of Oxford University Press. 

1.1.3  Metals and Wigner–Seitz Theory (B) 

Examples of metals are sodium (Na) and copper (Cu). A metal such as Na is 
viewed as being composed of positive ion cores (Na+) immersed in a “sea” of 
free conduction electrons that come from the removal of the 3s electron from 
atomic Na. Metallic binding can be partly understood within the context of the 
Wigner-Seitz theory. In a full treatment, it would be necessary to confront the 
problem of electrons in a periodic lattice. (A discussion of the Wigner–Seitz the-
ory will be deferred until Chap. 3.) One reason for the binding is the lowering of 
the kinetic energy of the “free” electrons relative to their kinetic energy in the 
atomic 3s state [41]. In a metallic crystal, the valence electrons are free (within 
the constraints of the Pauli principle) to wander throughout the crystal, causing 
them to have a smoother wave function and hence less ∇2ψ. Generally speaking 
this spreading of the electrons wave function also allows the electrons to make 
better use of the attractive potential. Lowering of the kinetic and/or potential  

                                                           
3 The Born–Haber cycle starts with (say) NaCl solid. Let U be the energy needed to break 

this up into Na+ gas and Cl– gas. Suppose it takes EF units of energy to go from Cl– gas to 
Cl gas plus electrons, and EI units of energy are gained in going from Na+ gas plus elec-
trons to Na gas. The Na gas gives up heat of sublimation energy S in going to Na solid, 
and the Cl gas gives up heat of dissociation D in going to Cl2 gas. Finally, let the Na 
solid and Cl2 gas go back to NaCl solid in its original state with a resultant energy W. We 
are back where we started and so the energies must add to zero: U – EI + EF – S – D –
W = 0. This equation can be used to determine U from other experimental quantities. 
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energy implies binding. However, the electron–electron Coulomb repulsions can-
not be neglected (see, e.g., Sect. 3.1.4), and the whole subject of binding in met-
als is not on so good a quantitative basis as it is in crystals involving the interac-
tions of atoms or molecules which do not have free electrons. One reason why 
the metallic crystal is prevented from collapsing is the kinetic energy of the elec-
trons. Compressing the solid causes the wave functions of the electrons to “wig-
gle” more and hence raises their kinetic energy. 

A very simple picture4 suffices to give part of the idea of metallic binding. The 
ground-state energy of an electron of mass M in a box of volume V is [19] 

 3/2
22

2
−= V

M
E π= . 

Thus the energy of N electrons in N separate boxes is 

 3/2
22

2
−= V

M
NEA

π= . (1.21) 

The energy of N electrons in a box of volume NV is (neglecting electron–electron 
interaction that would tend to increase the energy) 

 3/23/2
22

2
−−= NV

M
NEM

π= . (1.22) 

Therefore EM/EA = N –2/3 << 1 for large N and hence the total energy is lowered 
considerably by letting the electrons spread out. This model of binding is, of 
course, not adequate for a real metal, since the model neglects not only electron–
electron interactions but also the potential energy of interaction between electrons 
and ions and between ions and other ions. It also ignores the fact that electrons fill 
up states by satisfying the Pauli principle. That is, they fill up in increasing en-
ergy. But it does clearly show how the energy can be lowered by allowing the 
electronic wave functions to spread out. 

In modern times, considerable progress has been made in understanding the 
cohesion of metals by the density functional method, see Chap. 3. We mention in 
particular, Daw [1.6]. 

Due to the important role of the free electrons in binding, metals are good elec-
trical and thermal conductors. They have moderate to fairly strong binding. We do 
not think of the binding forces in metals as being two-body, central, or short-
range. 

                                                           
4 A much more sophisticated approach to the binding of metals is contained in the pe-

dagogical article by Tran and Perdew [1.26]. This article shows how exchange and cor-
relation effects are important and discusses modern density functional methods (see 
Chap. 3). 



1.1 Classification of Solids by Binding Forces (B)      11 

 

1.1.4  Valence Crystals and Heitler–London Theory (B) 

An example of a valence crystal is carbon in diamond form. One can think of the 
whole valence crystal as being a huge chemically saturated molecule. As in the 
case of metals, it is not possible to understand completely the binding of valence 
crystals without considerable quantum-mechanical calculations, and even then the 
results are likely to be only qualitative. The quantum-mechanical considerations 
(Heitler–London theory) will be deferred until Chap. 3. 

Some insight into covalent bonds (also called homopolar bonds) of valence 
crystals can be gained by considering them as being caused by sharing electrons 
between atoms with unfilled shells. Sharing of electrons can lower the energy be-
cause the electrons can get into lower energy states without violating the Pauli 
principle. In carbon, each atom has four electrons that participate in the valence 
bond. These are the electrons in the 2s2p shell, which has eight available states.5 
The idea of the valence bond in carbon is (very schematically) indicated in 
Fig. 1.4. In this figure each line symbolizes an electron bond. The idea that the 
eight 2s2p states participate in the valence bond is related to the fact that we have 
drawn each carbon atom with eight bonds. 

 

C C C

C C C

C C C

 
Fig. 1.4. The valence bond of diamond 

Valence crystals are characterized by hardness, poor cleavage, strong bonds, 
poor electronic conductivity, and poor ionic conductivity. The forces in covalent 
bonds can be thought of as short-range, two-body, but not central forces. The co-
valent bond is very directional, and the crystals tend to be loosely packed. 

                                                           
5 More accurately, one thinks of the electron states as being combinations formed from s 

and p states to form sp3 hybrids. A very simple discussion of this process as well as the 
details of other types of bonds is given by Moffatt et al [1.17]. 
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Molecular crystals are bound by the van der
Waals forces caused by fluctuating dipoles
in each molecule. A “snap-shot” of the fluc-
tuations. 
Example: argon 
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Ionic crystals are bound by ionic forces as 
described by the Born–Mayer theory. 
Example: NaCl 
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Metallic crystalline binding is described by
quantum-mechanical means. One simple
theory which does this is the Wigner–Seitz
theory. 
Example: sodium 

  

+ 
ion 

+ 
ion 

+ 
ion 

+ 
ion 

 
Valence crystalline binding is described 
by quantum-mechanical means. One sim-
ple theory that does this is the Heitler–
London theory. 
Example: carbon in diamond form 

Fig. 1.5. Schematic view of the four major types of crystal bonds. All binding is due to the 
Coulomb forces and quantum mechanics is needed for a complete description, but some 
idea of the binding of molecular and ionic crystals can be given without quantum mechan-
ics. The density of electrons is indicated by the shading. Note that the outer atomic elec-
trons are progressively smeared out as one goes from an ionic crystal to a valence crystal to 
a metal 

1.1.5  Comment on Hydrogen-Bonded Crystals (B) 

Many authors prefer to add a fifth classification of crystal bonding: hydrogen-
bonded crystals [1.18]. The hydrogen bond is a bond between two atoms due to 
the presence of a hydrogen atom between them. Its main characteristics are caused 
by the small size of the proton of the hydrogen atom, the ease with which the elec-
tron of the hydrogen atom can be removed, and the mobility of the proton. 

The presence of the hydrogen bond results in the possibility of high dielectric 
constant, and some hydrogen-bonded crystals become ferroelectric. A typical ex-
ample of a crystal in which hydrogen bonds are important is ice. One generally 
thinks of hydrogen-bonded crystals as having fairly weak bonds. Since the hydro-
gen atom often loses its electron to one of the atoms in the hydrogen-bonded 
molecule, the hydrogen bond is considered to be largely ionic in character. For 
this reason we have not made a separate classification for hydrogen-bonded  
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crystals. Of course, other types of bonding may be important in the total binding 
together of a crystal with hydrogen bonds. Figure 1.5 schematically reviews the 
four major types of crystal bonds. 

1.2  Group Theory and Crystallography 

We start crystallography by giving a short history [1.14]. 

1. In 1669 Steno gave the law of constancy of angle between like crystal faces. 
This of course was a key idea needed to postulate there was some underlying 
microscopic symmetry inherent in crystals. 

2. In 1784 Abbe Hauy proposed the idea of unit cells. 

3. In 1826 Naumann originated the idea of 7 crystal systems. 

4. In 1830 Hessel said there were 32 crystal classes because only 32 point groups 
were consistent with the idea of translational symmetry. 

5. In 1845 Bravais noted there were only 14 distinct lattices, now called Bravais 
lattices, which were consistent with the 32 point groups. 

6. By 1894 several groups had enumerated the 230 space groups consistent with 
only 230 distinct kinds of crystalline symmetry. 

7. By 1912 von Laue started X-ray experiments that could delineate the space 
groups. 

8. In 1936 Seitz started deriving the irreducible representations of the space 
groups. 

9. In 1984 Shectmann, Steinhardt et al found quasi-crystals, substances that were 
neither crystalline nor glassy but nevertheless ordered in a quasi periodic way. 

The symmetries of crystals determine many of their properties as well as sim-
plify many calculations. To discuss the symmetry properties of solids, one needs 
an appropriate formalism. The most concise formalism for this is group theory. 
Group theory can actually provide deep insight into the classification by quantum 
numbers of quantum-mechanical states. However, we shall be interested at this 
stage in crystal symmetry. This means (among other things) that finite groups will 
be of interest, and this is a simplification. We will not use group theory to discuss 
crystal symmetry in this Section. However, it is convenient to introduce some 
group-theory notation in order to use the crystal symmetry operations as examples 
of groups and to help in organizing in one’s mind the various sorts of symmetries 
that are presented to us by crystals. We will use some of the concepts (presented 
here) in parts of the chapter on magnetism (Chap. 7) and also in a derivation of 
Bloch’s theorem in Appendix C. 
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1.2.1  Definition and Simple Properties of Groups (AB) 

There are two basic ingredients of a group: a set of elements G = {g1, g2,…} and 
an operation (*) that can be used to combine the elements of the set. In order that 
the set form a group, there are four rules that must be satisfied by the operation of 
combining set elements: 

1. Closure. If gi and gj are arbitrary elements of G, then 

 Ggg ji ∈∗  

(∈ means “included in”). 

2. Associative Law. If gi, gj and gk are arbitrary elements of G, then 

 )()( kjikji gggggg ∗∗∗∗ = . 

3. Existence of the identity. There must exist a ge ∈ G with the property that for 
any 

 kekkek gggggGg ==∈ ∗∗, . 

Such a ge is called E, the identity. 

4. Existence of the inverse. For each gi ∈ G there exists a gi
−1 ∈ G such that 

 Egggg iiii == ∗−−∗ 11 , 

Where gi
−1 is called the inverse of gi.  

From now on the * will be omitted and gi * gj will simply be written gi gj. 

 

1 2 

3

P1

P2P3

A

 
Fig. 1.6. The equilateral triangle 

An example of a group that is small enough to be easily handled and yet large 
enough to have many features of interest is the group of rotations in three dimen-
sions that bring the equilateral triangle into itself. This group, denoted by D3, has 
six elements. One thus says its order is 6. 
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In Fig. 1.6, let A be an axis through the center of the triangle and perpendicular 
to the plane of the paper. Let g1, g2, and g3 be rotations of 0, 2π/3, and 4π/3 about 
A. Let g4, g5, and g6 be rotations of π about the axes P1, P2, and P3. The group 
multiplication table of D3 can now be constructed. See Table 1.2. 

Table 1.2. Group multiplication table of D3 

D3 g1 g2 g3 g4 g5 g6 

g1 g1 g2 g3 g4 g5 g6 
g2 g2 g3 g1 g6 g4 g5 
g3 g3 g1 g2 g5 g6 g4 
g4 g4 g5 g6 g1 g2 g3 
g5 g5 g6 g4 g3 g1 g2 
g6 g6 g4 g5 g2 g3 g1 

The group elements can be very easily described by indicating how the vertices 
are mapped. Below, arrows are placed in the definition of g1 to define the nota-
tion. After g1, the arrows are omitted: 

 

. 
123
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     , 
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321

      , 
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Using this notation we can see why the group multiplication table indicates that 
g4 g2 = g5:6 

 524 231
321

132
321

312
321

ggg =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= . 

The table also says that g2 g4 = g6. Let us check this: 

 642 123
321

312
321

132
321

ggg =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= . 

In a similar way, the rest of the group multiplication table was easily derived. 
Certain other definitions are worth noting [61]. A is a proper subgroup of G if A 

is a group contained in G and not equal to E (E is the identity that forms a trivial 
group of order 1) or G. In D3, {g1, g2, g3}, {g1, g4}, {g1, g5}, {g1, g6} are proper 
subgroups. The class of an element g ∈ G is the set of elements {gi

−1ggi} for all gi 
∈ G. Mathematically this can be written for g ∈ G, Cl(g) = {gi

−1ggi| for all gi ∈ G}. 
                                                           
6 Note that the application starts on the right so 3 → 1 → 2, for example. 
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Two operations belong to the same class if they perform the same sort of geometri-
cal operation. For example, in the group D3 there are three classes: 

 },,{and},,{},{ 654321 gggggg . 

Two very simple sorts of groups are often encountered. One of these is the cy-
clic group. A cyclic group can be generated by a single element. That is, in a cy-
clic group there exists a g ∈ G, such that all gk ∈ G are given by gk = gk (of course 
one must name the group elements suitably). For a cyclic group of order N with 
generator g, gN ≡ E. Incidentally, the order of a group element is the smallest 
power to which the element can be raised and still yield E. Thus the order of the 
generator (g) is N. 

The other simple group is the abelian group. In the abelian group, the order of 
the elements is unimportant (gigj = gjgi for all gi, gj ∈ G). The elements are said to 
commute. Obviously all cyclic groups are abelian. The group D3 is not abelian but 
all of its subgroups are. 

In the abstract study of groups, all isomorphic groups are equivalent. Two 
groups are said to be isomorphic if there is a one-to-one correspondence between 
the elements of the group that preserves group “multiplication.” Two isomorphic 
groups are identical except for notation. For example, the three subgroups of D3 
that are of order 2 are isomorphic. 

An interesting theorem, called Lagrange’s theorem, states that the order of 
a group divided by the order of a subgroup is always an integer. From this it can 
immediately be concluded that the only possible proper subgroups of D3 have or-
der 2 or 3. This, of course, checks with what we actually found for D3. 

Lagrange’s theorem is proved by using the concept of a coset. If A is a sub-
group of G, the right cosets are of the form Agi for all gi ∈ G (cosets with identical 
elements are not listed twice) − each gi generates a coset. For example, the right 
cosets of {g1, g6} are {g1, g6}, {g2, g4}, and {g3, g5}. A similar definition can be 
made of the term left coset. 

A subgroup is normal or invariant if its right and left cosets are identical. In 
D3, {g1, g2, g3} form a normal subgroup. The factor group of a normal subgroup is 
the normal subgroup plus all its cosets. In D3, the factor group of {g1, g2, g3} has 
elements {g1, g2, g3} and {g4, g5, g6}. It can be shown that the order of the factor 
group is the order of the group divided by the order of the normal subgroup. The 
factor group forms a group under the operation of taking the inner product. The 
inner product of two sets is the set of all possible distinct products of the elements, 
taking one element from each set. For example, the inner product of {g1, g2, g3} 
and {g4, g5, g6} is {g4, g5, g6}. The arrangement of the elements in each set does 
not matter. 

It is often useful to form a larger group from two smaller groups by taking the 
direct product. Such a group is naturally enough called a direct product group. Let 
G = {g1 … gn} be a group of order n, and H = {h1 … hm} be a group of order m. 
Then the direct product G × H is the group formed by all products of the form 
gi hj. The order of the direct product group is nm. In making this definition, it has 
been assumed that the group operations of G and H are independent. When this is 
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not so, the definition of the direct product group becomes more complicated (and 
less interesting − at least to the physicist). See Sect. 7.4.4 and Appendix C. 

1.2.2  Examples of Solid-State Symmetry Properties (B) 

All real crystals have defects (see Chap. 11) and in all crystals the atoms vibrate 
about their equilibrium positions. Let us define ideal crystals as real crystals in 
which these complications are not present. This chapter deals with ideal crystals. 
In particular we will neglect boundaries. In other words, we will assume that the 
crystals are infinite. Ideal crystals exhibit many types of symmetry, one of the 
most important of which is translational symmetry. Let m1, m2, and m3 be arbi-
trary integers. A crystal is said to be translationally symmetric or periodic if there 
exist three linearly independent vectors (a1, a2, a3) such that a translation by m1a1 
+ m2a2 + m3a3 brings one back to an equivalent point in the crystal. We summarize 
several definitions and facts related to the ai: 

1. The ai are called basis vectors. Usually, they are not orthogonal. 

2. The set (a1, a2, a3) is not unique. Any linear combination with integer coeffi-
cients gives another set. 

3. By parallel extensions, the ai form a parallelepiped whose volume is 
V = a1 · (a2 × a3). This parallelepiped is called a unit cell. 

4. Unit cells have two principal properties: 

a) It is possible by stacking unit cells to fill all space. 

b) Corresponding points in different unit cells are equivalent. 

5. The smallest possible unit cells that satisfy properties a) and b) above are called 
primitive cells (primitive cells are not unique). The corresponding basis vectors 
(a1, a2, a3) are then called primitive translations. 

6. The set of all translations T = m1a1 + m2a2 + m3a3 form a group. The group is of 
infinite order, since the crystal is assumed to be infinite in size.7 

The symmetry operations of a crystal are those operations that bring the crystal 
back onto itself. Translations are one example of this sort of operation. One can 
find other examples by realizing that any operation that maps three noncoplanar 
points on equivalent points will map the whole crystal back on itself. Other types 
of symmetry transformations are rotations and reflections. These transformations 
are called point transformations because they leave at least one point fixed. For 
example, D3 is a point group because all its operations leave the center of the 
equilateral triangle fixed. 

                                                           
7 One can get around the requirement of having an infinite crystal and still preserve trans-

lational symmetry by using periodic boundary conditions. These will be described later. 
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We say we have an axis of symmetry of the nth order if a rotation by 2π/n 
about the axis maps the body back onto itself. Cn is often used as a symbol to rep-
resent the 2π/n rotations about a given axis. Note that (Cn)n = C1 = E, the identity. 

A unit cell is mapped onto itself when reflected in a plane of reflection symme-
try. The operation of reflecting in a plane is called σ. Note that σ2 = E. 

Another symmetry element that unit cells may have is a rotary reflection axis. 
If a body is mapped onto itself by a rotation of 2π/n about an axis and a simulta-
neous reflection through a plane normal to this axis, then the body has a rotary re-
flection axis of nth order. 

If f(x, y, z) is any function of the Cartesian coordinates (x, y, z), then the inver-
sion I through the origin is defined by I[f(x, y, z)] = f(−x, −y, −z). If 
f(x, y, z) = f(−x, −y, −z), then the origin is said to be a center of symmetry for f. 
Denote an nth order rotary reflection by Sn, a reflection in a plane perpendicular to 
the axis of the rotary reflection by σh, and the operation of rotating 2π/n about the 
axis by Cn. Then Sn = Cnσh. In particular, S2 = C2σh = I. A second-order rotary re-
flection is the same as an inversion. 

 

a
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Fig. 1.7. The cubic unit cell 

To illustrate some of the point symmetry operations, use will be made of the 
example of the unit cell being a cube. The cubic unit cell is shown in Fig. 1.7. It is 
obvious from the figure that the cube has rotational symmetry. For example, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

12345678
87654321

2C  

obviously maps the cube back on itself. The rotation represented by C2 is about 
a horizontal axis. There are two other axes that also show two-fold symmetry. It 
turns out that all three rotations belong to the same class (in the mathematical 
sense already defined) of the 48-element cubic point group Oh (the group of op-
erations that leave the center point of the cube fixed and otherwise map the cube 
onto itself or leave the figure invariant). 
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The cube has many other rotational symmetry operations. There are six four-
fold rotations that belong to the class of 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

56218734
87654321

4C . 

There are six two-fold rotations that belong to the class of the π rotation about the 
axis ab. There are eight three-fold rotation elements that belong to the class of 
2π/3 rotations about the body diagonal. Counting the identity, (1 + 3 + 6 + 6 + 8) 
= 24 elements of the cubic point group have been listed. 

It is possible to find the other 24 elements of the cubic point group by taking 
the product of the 24 rotation elements with the inversion element. For the cube, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21436587
87654321

I . 

The use of the inversion element on the cube also introduces the reflection 
symmetry. A mirror reflection can always be constructed from a rotation and an 
inversion. This can be seen explicitly for the cube by direct computation. 
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It has already been pointed out that rotations about equivalent axes belong to 
the same class. Perhaps it is worthwhile to make this statement somewhat more 
explicit. If in the group there is an element that carries one axis into another, then 
rotations about the axes through the same angle belong to the same class. 

A crystalline solid may also contain symmetry elements that are not simply 
group products of its rotation, inversion, and translational symmetry elements. 
There are two possible types of symmetry of this type. One of these types is called 
a screw-axis symmetry, an example of which is shown in Fig. 1.8. 

The symmetry operation (which maps each point on an equivalent point) for 
Fig. 1.8 is to simultaneously rotate by 2π/3 and translate by d. In general a screw 
axis is the combination of a rotation about an axis with a displacement parallel to 

 

d d d
 

Fig. 1.8. Screw-axis symmetry 
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the axis. Suppose one has an n-fold screw axis with a displacement distance d. Let 
a be the smallest period (translational symmetry distance) in the direction of the 
axis. Then it is clear that nd = pa, where p = 1, 2,…, n – 1. This is a restriction on 
the allowed types of screw-axis symmetry. 

An example of glide plane symmetry is shown in Fig. 1.9. The line beneath the 
d represents a plane perpendicular to the page. The symmetry element for Fig. 1.9 
is to simultaneously reflect through the plane and translate by d. In general, a glide 
plane is a reflection with a displacement parallel to the reflection plane. Let d be 
the translation operation involved in the glide-plane symmetry operation. Let a be 
the length of the period of the lattice in the direction of the translation. Only those 
glide-reflection planes are possible for which 2d = a. 

When one has a geometrical entity with several types of symmetry, the various 
symmetry elements must be consistent. For example, a three-fold axis cannot have 
only one mirror plane that contains it. The fact that we have a three-fold axis auto-
matically requires that if we have one mirror plane that contains the axis, then we 
must have three such planes. The three-fold axis implies that every physical prop-
erty must be repeated three times as one goes around the axis. A particularly inter-
esting consistency condition is examined in the next Section. 

 

d d d

 
Fig. 1.9. Glide-plane symmetry 

1.2.3  Theorem: No Five-fold Symmetry (B) 

Any real crystal exhibits both translational and rotational symmetry. The mere fact 
that a crystal must have translational symmetry places restrictions on the types of 
rotational symmetry that one can have. 

The theorem is: 

A crystal can have only one-, two-, three-, four-, and six-fold axes of symmetry. 

The proof of this theorem is facilitated by the geometrical construction shown 
in Fig. 1.10 [1.5, p. 32]. In Fig. 1.10, R is a vector drawn to a lattice point (one of 
the points defined by m1a1 + m2a2 + m3a3), and R1 is another lattice point. R1 is 
chosen so as to be the closest lattice point to R in the direction of one of the trans-
lations in the (x,z)-plane; thus |a| = |R − R1| is the minimum separation distance 
between lattice points in that direction. The coordinate system is chosen so that 
the z-axis is parallel to a. It will be assumed that a line parallel to the y-axis and 
passing through the lattice point defined by R is an n-fold axis of symmetry. 
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Strictly speaking, one would need to prove one can always find a lattice plane 
perpendicular to an n-fold axis. Another way to look at it is that our argument is 
really in two dimensions, but one can show that three-dimensional Bravais lattices 
do not exist unless two-dimensional ones do. These points are discussed by 
Ashcroft and Mermin in two problems [21, p. 129]. Since all lattice points are 
equivalent, there must be a similar axis through the tip of R1. If θ = 2π/n, then 
a counterclockwise rotation of a about R by θ produces a new lattice vector R r. 
Similarly a clockwise rotation by the same angle of a about R1 produces a new lat-
tice point R1

r. From Fig. 1.10, R r − R1
r is parallel to the z-axis and R r − R1

r = p|a|. 
Further, |pa| = |a| + 2|a| sin(θ − π/2) = |a| (1 − 2 cosθ). Therefore p = 1 − 2 cosθ or 
|cosθ| = |(p − 1)/2| ≤ 1. This equation can be satisfied only for p = 3, 2, 1, 0, −1 or 
θ = ±(2π/1, 2π/2, 2π/3, 2π/4, 2π/6). This is the result that was to be proved. 

 x

y 

z

 p|a|

|a| |a|

a θ θ R r

R
r
1R

R1 

 
Fig. 1.10. The impossibility of five-fold symmetry. All vectors are in the (x,z)-plane 

The requirement of translational symmetry and symmetry about a point, when 
combined with the formalism of group theory (or other appropriate means), allows 
one to classify all possible symmetry types of solids. Deriving all the results is far 
beyond the scope of this chapter. For details, the book by Buerger [1.5] can be 
consulted. The following sections (1.2.4 and following) give some of the results of 
this analysis. 

Quasiperiodic Crystals or Quasicrystals (A) 

These materials represented a surprise. When they were discovered in 1984, crys-
tallography was supposed to be a long dead field, at least for new fundamental re-
sults. We have just proved a fundamental theorem for crystalline materials that 
forbids, among other symmetries, a 5-fold one. In 1984, materials that showed 
relatively sharp Bragg peaks and that had 5-fold symmetry were discovered. It 
was soon realized that the tacit assumption that the presence of Bragg peaks im-
plied crystalline structure was false. 
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It is true that purely crystalline materials, which by definition have translational 
periodicity, cannot have 5-fold symmetry and will have sharp Bragg peaks. How-
ever, quasicrystals that are not crystalline, that is not translationally periodic, can 
have perfect (that is well-defined) long-range order. This can occur, for example, 
by having a symmetry that arises from the sum of noncommensurate periodic 
functions, and such materials will have sharp (although perhaps dense) Bragg 
peaks (see Problems 1.10 and 1.12). If the amplitude of most peaks is very small 
the denseness of the peaks does not obscure a finite number of diffraction peaks 
being observed. Quasiperiodic crystals will also have a long-range orientational 
order that may be 5-fold. 

The first quasicrystals that were discovered (Shechtman and coworkers)8 were 
grains of AlMn intermetallic alloys with icosahedral symmetry (which has 5-fold 
axes). An icosahedron is one of the five regular polyhedrons (the others being tet-
rahedron, cube, octahedron and dodecahedron). A regular polyhedron has identi-
cal faces (triangles, squares or pentagons) and only two faces meet at an edge. 
Other quasicrystals have since been discovered that include AlCuCo alloys with 
decagonal symmetry. The original theory of quasicrystals is attributed to Levine 
and Steinhardt.9 The book by Janot can be consulted for further details [1.12]. 

1.2.4  Some Crystal Structure Terms and Nonderived Facts (B) 

A set of points defined by the tips of the vectors m1a1 + m2a2 + m3a3 is called a lat-
tice. In other words, a lattice is a three-dimensional regular net-like structure. If 
one places at each point a collection or basis of atoms, the resulting structure is 
called a crystal structure. Due to interatomic forces, the basis will have no sym-
metry not contained in the lattice. The points that define the lattice are not neces-
sarily at the location of the atoms. Each collection or basis of atoms is to be iden-
tical in structure and composition. 

Point groups are collections of crystal symmetry operations that form a group 
and also leave one point fixed. From the above, the point group of the basis must 
be a point group of the associated lattice. There are only 32 different point groups 
allowed by crystalline solids. An explicit list of point groups will be given later in 
this chapter. 

Crystals have only 14 different possible parallelepiped networks of points. 
These are the 14 Bravais lattices. All lattice points in a Bravais lattice are equiva-
lent. The Bravais lattice must have at least as much point symmetry as its basis. 
For any given crystal, there can be no translational symmetry except that specified 
by its Bravais lattice. In other words, there are only 14 basically different types of 
translational symmetry. This result can be stated another way. The requirement 
that a lattice be invariant under one of the 32 point groups leads to symmetrically 
specialized types of lattices. These are the Bravais lattices. The types of symmetry 

                                                           
8 See Shechtman et al [1.21]. 
9 See Levine and  Steinhardt [1.15]. See also Steinhardt and Ostlund [1.22]. 
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of the Bravais lattices with respect to rotations and reflections specify the crystal 
systems. There are seven crystal systems. The meaning of Bravais lattice and crys-
tal system will be clearer after the next Section, where unit cells for each Bravais 
lattice will be given and each Bravais lattice will be classified according to its 
crystal system. 

Associating bases of atoms with the 14 Bravais lattices gives a total of 230 
three-dimensional periodic patterns. (Loosely speaking, there are 230 different 
kinds of “three-dimensional wall paper.”) That is, there are 230 possible space 
groups. Each one of these space groups must have a group of primitive transla-
tions as a subgroup. As a matter of fact, this subgroup must be an invariant sub-
group. Of these space groups, 73 are simple group products of point groups and 
translation groups. These are the so-called symmorphic space groups. The rest of 
the space groups have screw or glide symmetries. In all cases, the factor group of 
the group of primitive translations is isomorphic to the point group that makes up 
the (proper and improper – an improper rotation has a proper rotation plus an in-
version or a reflection) rotational parts of the symmetry operations of the space 
group. The above very brief summary of the symmetry properties of crystalline 
solids is by no means obvious and it was not produced very quickly. A brief re-
view of the history of crystallography can be found in the article by Koster [1.14]. 

1.2.5  List of Crystal Systems and Bravais Lattices (B) 

The seven crystal systems and the Bravais lattice for each type of crystal system 
are described below. The crystal systems are discussed in order of increasing 
symmetry. 

1. Triclinic Symmetry. For each unit cell, α ≠ β, β ≠ γ, α ≠ γ, a ≠ b, b ≠ c, and 
a ≠ c, and there is only one Bravais lattice. Refer to Fig. 1.11 for nomenclature. 

 a 

b 

c 

α 

β 

 γ 

 
Fig. 1.11. A general unit cell (triclinic) 
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2. Monoclinic Symmetry. For each unit cell, α = γ = π/2, β ≠ α, a ≠ b, b ≠ c, and 
a ≠ c. The two Bravais lattices are shown in Fig. 1.12. 

 a

b

c 

α 

β 

γ 

(a)      

a

b

c 

(b)  
Fig. 1.12. (a) The simple monoclinic cell, and (b) the base-centered monoclinic cell 

3. Orthorhombic Symmetry. For each unit cell, α = β = γ = π/2, a ≠ b, b ≠ c, and 
a ≠ c. The four Bravais lattices are shown in Fig. 1.13. 

 a 

 b 

c 

α 

β 

 γ 

(a)    

 

(b)    (c)    (d)  
Fig. 1.13. (a) The simple orthorhombic cell, (b) the base-centered orthorhombic cell, 
(c) the body-centered orthorhombic cell, and (d) the face-centered orthorhombic cell 

4. Tetragonal Symmetry. For each unit cell, α = β = γ = π/2 and a = b ≠ c. The two 
unit cells are shown in Fig. 1.14. 

 a

 b

c 

   α 

  β 

 γ 

(a)      (b)  
Fig. 1.14. (a) The simple tetragonal cell, and (b) the body-centered tetragonal cell 
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5. Trigonal Symmetry. For each unit cell, α = β = γ ≠ π/2, < 2π/3 and a = b = c. 
There is only one Bravais lattice, whose unit cell is shown in Fig. 1.15. 

 

 
Fig. 1.15. Trigonal unit cell 

6. Hexagonal Symmetry. For each unit cell, α = β = π/2, γ = 2π/3, a = b, and a ≠ c. 
There is only one Bravais lattice, whose unit cell is shown in Fig. 1.16. 

a

 b

c 

   α 

  γ 

 β 

 
Fig. 1.16. Hexagonal unit cell 

7. Cubic Symmetry. For each unit cell, α = β = γ = π/2 and a = b = c. The unit 
cells for the three Bravais lattices are shown in Fig. 1.17. 

 a 

b 

c 

   α 

  β 

 γ 

(a)      (b)      (c)  
Fig. 1.17. (a) The simple cubic cell, (b) the body-centered cubic cell, and (c) the face-
centered cubic cell 



26      1 Crystal Binding and Structure 

 

1.2.6  Schoenflies and International Notation for Point Groups (A) 

There are only 32 point group symmetries that are consistent with translational 
symmetry. In this Section a descriptive list of the point groups will be given, but 
first a certain amount of notation is necessary. 

The international (sometimes called Hermann–Mauguin) notation will be de-
fined first. The Schoenflies notation will be defined in terms of the international 
notation. This will be done in a table listing the various groups that are compatible 
with the crystal systems (see Table 1.3). 

An f-fold axis of rotational symmetry will be specified by f. Also, f will stand for 
the group of f-fold rotations. For example, 2 means a two-fold axis of symmetry 
(previously called C2), and it can also mean the group of two-fold rotations. f  will 
denote a rotation inversion axis. For example, 2  means that the crystal is brought 
back into itself by a rotation of π followed by an inversion. f/m means a rotation axis 
with a perpendicular mirror plane. f 2 means a rotation axis with a perpendicular 
two-fold axis (or axes). fm means a rotation axis with a parallel mirror plane (or 
planes) (m = 2 ).  f 2 means a rotation inversion axis with a perpendicular two-fold 
axis (or axes). f m means that the mirror plane m (or planes) is parallel to the rota-
tion inversion axis. A rotation axis with a mirror plane normal and mirror planes 
parallel is denoted by f/mm or (f/m)m. Larger groups are compounded out of these 
smaller groups in a fairly obvious way. Note that 32 point groups are listed. 

A very useful pictorial way of thinking about point group symmetries is by the 
use of stereograms (or stereographic projections). Stereograms provide a way of 
representing the three-dimensional symmetry of the crystal in two dimensions. To 
construct a stereographic projection, a lattice point (or any other point about 
which one wishes to examine the point group symmetry) is surrounded by 
a sphere. Symmetry axes extending from the center of the sphere intersect the 
sphere at points. These points are joined to the south pole (for points above the 
equator) by straight lines. Where the straight lines intersect a plane through the 
equator, a geometrical symbol may be placed to indicate the symmetry of the ap-
propriate symmetry axis. The stereogram is to be considered as viewed by some-
one at the north pole. Symmetry points below the equator can be characterized by 
turning the process upside down. Additional diagrams to show how typical points 
are mapped by the point group are often given with the stereogram. The idea is il-
lustrated in Fig. 1.18. Wood [98] and Brown [49] have stereograms of the 32 point 
groups. Rather than going into great detail in describing stereograms, let us look at 
a stereogram for our old friend D3 (or in the international notation 32). 

The principal three-fold axis is represented by the triangle in the center of 
Fig. 1.19b. The two-fold symmetry axes perpendicular to the three-fold axis are 
represented by the dark ovals at the ends of the line through the center of the circle. 

In Fig. 1.19a, the dot represents a point above the plane of the paper and the 
open circle represents a point below the plane of the paper. Starting from any 
given point, it is possible to get to any other point by using the appropriate sym-
metry operations. D3 has no reflection planes. Reflection planes are represented by 
dark lines. If there had been a reflection plane in the plane of the paper, then the 
outer boundary of the circle in Fig. 1.19b would have been dark. 
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Table 1.3. Schoenflies1 and international2 symbols for point groups, and permissible point 
groups for each crystal system 

Crystal system International symbol Schoenflies symbol 
 1 C1 Triclinic 
1  Ci 

 2 C2 
 m C1h Monoclinic 
 (2/m) C2h 
 222 D2 
 2mm C2v Orthorhombic 
 (2/m)(2/m)(2/m) D2h 
 4 C4 
4  S4 

 (4/m) C4h 
 422 D4 
 4mm C4v 
42m  D2d 

Tetragonal 

 (4/m)(2/m)(2/m) D4h 
 3 C3 
3̄  C3i 
 32 D3 
 3m C3v 

Trigonal 

3(2 / )m  D3d 
 6 C6 
6̄  C3h 
 (6/m) C6h 
 622 D6 
 6mm C6v 
6 2m  D3h 

Hexagonal 

 (6/m)(2/m)(2/m) D6h 
 23 T 
(2 / )3m  Th 
 432 O 
43m  Td 

Cubic 

(4 / )(3)(2 / )m m  Oh 
1 A. Schoenflies, Krystallsysteme und Krystallstruktur, Leipzig, 1891. 
2 C. Hermann, Z. Krist., 76, 559 (1931); C. Mauguin, Z. Krist., 76, 542 (1931). 
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At this stage it might be logical to go ahead with lists, descriptions, and names 
of the 230 space groups. This will not be done for the simple reason that it would 
be much too confusing in a short time and would require most of the book other-
wise. For details, Buerger [1.5] can always be consulted. A large part of the theory 
of solids can be carried out without reference to any particular symmetry type. For 
the rest, a research worker is usually working with one crystal and hence one 
space group and facts about that group are best learned when they are needed 
(unless one wants to specialize in crystal structure). 

 N 

S 

Symmetry
axis 

Lattice 
point 

Plane 
through 
equator 

 

 

(a) (b)  
Fig. 1.18. Illustration of the way a stereo-
gram is constructed 

Fig. 1.19. Stereogram for D3 

1.2.7  Some Typical Crystal Structures (B) 

The Sodium Chloride Structure. The sodium chloride structure, shown in 
Fig. 1.20, is one of the simplest and most familiar. In addition to NaCl, PbS and 
MgO are examples of crystals that have the NaCl arrangement. The space lattice is 
fcc (face-centered cubic). Each ion (Na+ or Cl−) is surrounded by six nearest-
neighbor ions of the opposite sign. We can think of the basis of the space lattice as 
being a NaCl molecule. 

Table 1.4. Packing fractions (PF) and coordination numbers (CN) 

Crystal Structure PF CN 

fcc 74.0
6
2

=
π

 12 

bcc 68.0
8
3

=
π  8 

sc 52.0
6

=
π

 6 

diamond 34.0
16
3

=
π  4 

 



1.2 Group Theory and Crystallography      29 

 

 

+ ion - ion  
Fig. 1.20. The sodium chloride structure 

 

(0, 0, 0) (a/4, a/4, a/4)
 

Fig. 1.21. The diamond structure 

The Diamond Structure. The crystal structure of diamond is somewhat more 
complicated to draw than that of NaCl. The diamond structure has a space lattice 
that is fcc. There is a basis of two atoms associated with each point of the fcc lat-
tice. If the lower left-hand side of Fig. 1.21 is a point of the fcc lattice, then the 
basis places atoms at this point [labeled (0, 0, 0)] and at (a/4, a/4, a/4). By placing 
bases at each point in the fcc lattice in this way, Fig. 1.21 is obtained. The charac-
teristic feature of the diamond structure is that each atom has four nearest 
neighbors or each atom has tetrahedral bonding. Carbon (in the form of diamond), 
silicon, and germanium are examples of crystals that have the diamond structure. 
We compare sc, fcc, bcc, and diamond structures in Table 1.4. 

The packing fraction is the fraction of space filled by spheres on each lattice 
point that are as large as they can be so as to touch but not overlap. The coordina-
tion number is the number of nearest neighbors to each lattice point. 

The Cesium Chloride Structure. The cesium chloride structure, shown in 
Fig. 1.22, is one of the simplest structures to draw. Each atom has eight nearest 
neighbors. Besides CsCl, CuZn (β-brass) and AlNi have the CsCl structure. The 
Bravais lattice is simple cubic (sc) with a basis of (0,0,0) and (a/2)(1,1,1). If all 
the atoms were identical this would be a body-centered cubic (bcc) unit cell. 

The Perovskite Structure. Perovskite is calcium titanate. Perhaps the most famil-
iar crystal with the perovskite structure is barium titanate, BaTiO3. Its structure is 
shown in Fig. 1.23. This crystal is ferroelectric. It can be described with a sc lat-
tice with basis vectors of (0,0,0), (a/2)(0,1,1), (a/2)(1,0,1), (a/2)(1,1,0), and 
(a/2)(1,1,1). 
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Fig. 1.22. The cesium chloride structure 
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Fig. 1.23. The barium titanate (BaTiO3)
structure 

Crystal Structure Determination (B) 

How do we know that these are the structures of actual crystals? The best way is 
by the use of diffraction methods (X-ray, electron, or neutron). See Sect. 1.2.9 for 
more details about X-ray diffraction. Briefly, X-rays, neutrons and electrons can 
all be diffracted from a crystal lattice. In each case, the wavelength of the dif-
fracted entity must be comparable to the spacing of the lattice planes. For X-rays 
to have a wavelength of order Angstroms, the energy needs to be of order keV, 
neutrons need to have energy of order fractions of an eV (thermal neutrons), and 
electrons should have energy of order eV. Because they carry a magnetic moment 
and hence interact magnetically, neutrons are particularly useful for determining 
magnetic structure.10 Neutrons also interact by the nuclear interaction, rather than 
with electrons, so they are used to located hydrogen atoms (which in a solid have 
few or no electrons around them to scatter X-rays). We are concerned here with 
elastic scattering. Inelastic scattering of neutrons can be used to study lattice vi-
brations (see the end of Sect. 4.3.1). Since electrons interact very strongly with 
other electrons their diffraction is mainly useful to elucidate surface structure.11 

Ultrabright X-rays: Synchrotron radiation from a storage ring provides a major 
increase in X-ray intensity. X-ray fluorescence can be used to study bonds on the 
surface because of the high intensity. 

                                                           
10 For example, Shull and Smart in 1949 used elastic neutron diffraction to directly demon-

strate the existence of two magnetic sublattices on an antiferromagnet. 
11 Diffraction of electrons was originally demonstrated by Davisson and Germer in an ex-

periment clearly showing the wave nature of electrons. 
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1.2.8  Miller Indices (B) 

In a Bravais lattice we often need to describe a plane or a set of planes, or a direc-
tion or a set of directions. The Miller indices are a notation for doing this. They 
are also convenient in X-ray work. 

To describe a plane: 

1. Find the intercepts of the plane on the three axes defined by the basis vectors 
(a1, a2, a3). 

2. Step 1 gives three numbers. Take the reciprocal of the three numbers. 

3. Divide the reciprocals by their greatest common divisor (which yields a set of 
integers). The resulting set of three numbers (h, k, l) is called the Miller indices 
for the plane. {h, k, l} means all planes equivalent (by symmetry) to (h, k, l). 

To find the Miller indices for a direction: 

1. Find any vector in the desired direction. 

2. Express this vector in terms of the basis (a1, a2, a3). 

3. Divide the coefficients of (a1, a2, a3) by their greatest common divisor. The re-
sulting set of three integers [h, k, l] defines a direction. 〈h, k, l〉 means all vec-
tors equivalent to [h, k, l]. Negative signs in any of the numbers are indicated 
by placing a bar over the number (thus h ). 

1.2.9  Bragg and von Laue Diffraction (AB)12 

By discussing crystal diffraction, we accomplish two things: (1) We make clear 
how we know actual crystal structures exist, and (2) We introduce the concept of 
the reciprocal lattice, which will be used throughout the book 

The simplest approach to Bragg diffraction is illustrated in Fig. 1.24. We as-
sume specular reflection with angle of incidence equal to angle of reflection. We 
also assume the radiation is elastically scattered so that incident and reflected 
waves have the same wavelength. 

For constructive interference we must have the path difference between re-
flected rays equal to an integral (n) number of wavelengths (λ). Using Fig. 1.24, 
the condition for diffraction peaks is then 

 θλ sin2dn = , (1.23) 

which is the famous Bragg law. Note that peaks in the diffraction only occur if λ is 
less than 2d, and we will only resolve the peaks if λ and d are comparable. 

                                                           
12 A particularly clear discussion of these topics is found in Brown and Forsyth [1.4]. See 

also Kittel [1.13, Chaps. 2 and 19]. 
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Fig. 1.24. Bragg diffraction 

The Bragg approach gives a simple approach to X-ray diffraction. However, it 
is not easily generalized to include the effects of a basis of atoms, of the distribu-
tion of electrons, and of temperature. For that we need the von Laue approach. 

We will begin our discussion in a fairly general way. X-rays are electromag-
netic waves and so are governed by the Maxwell equations. In SI and with no 
charges or currents (i.e. neglecting the interaction of the X-rays with the electron 
distribution except for scattering), we have for the electric field E and the mag-
netic field H (with the magnetic induction B = μ0H) 

 .0,,,0 0 =⋅∇
∂
∂−=×∇

∂
∂=×∇=⋅∇ BBEEHE

tt
ε  

Taking the curl of the third equation, using B = μ0H and using the first and second 
of the Maxwell equations we find the usual wave equation: 

 2

2

2
2 1

tc ∂
∂=∇ EE , (1.24) 

where c = (μ0ε0)–1/2 is the speed of light. There is also a similar wave equation for 
the magnetic field. For simplicity we will focus on the electric field for this dis-
cussion. We assume plane-wave X-rays are incident on an atom and are scattered 
as shown in Fig. 1.25. 

In Fig. 1.25 we use the center of the atom as the origin and rs locates the elec-
tron that scatters the X-ray. As mentioned earlier, we will first specialize to the 
case of the lattice of point scatterers, but the present setup is useful for generaliza-
tions. 

 Observation 
point 

R = rs + r
rs

ri

ki

kf

|kf| = |ki| = k r

Point of scattering

θ′Source 
point 

 
Fig. 1.25. Plane-wave scattering 



1.2 Group Theory and Crystallography      33 

 

The solution of the wave equation for the incident plane wave is 

 )](iexp[)( 0 tiii ω−= rkErE ⋅ , (1.25) 

where E0 is the amplitude and ω = kc. If the wave equation is written in spherical 
coordinates, one can find a solution for the spherically scattered wave (retaining 
only dominant terms far from the scattering location) 

 
r

K
kr

ss

i

1
e)(rEE = , (1.26) 

where K1 is a constant, with the scattered wave having the same frequency and 
wavelength as the incident wave. Spherically scattered waves are important ones 
since the wavelength being scattered is much greater than the size of the atom. 
Also, we assume the source and observation points are very far from the point of 
scattering. From the diagram r = R − rs, so by squaring, taking the square root, and 
using that rs /R << 1 (i.e. far from the scattering center), we have 

 ⎟
⎠
⎞

⎜
⎝
⎛ ′−= θcos1

R
rRr s , (1.27) 

from which since krs cosθ ≅ kf · rs; 

 sfkRkr rk ⋅−≅ . (1.28) 

Therefore 

 t
kR

s
sfi

R
K ωi)(ii

01 eee −−= rkkEE ⋅ , (1.29) 

where we have used (1.28), (1.26), and (1.25) and also assumed r−1 ≅ R−1 to suffi-
cient accuracy. Note that (ki − kf) · rs, as we will see, can be viewed as the phase 
difference between the wave scattered from the origin and that scattered from rs in 
the approximation we are using. Thus, the scattering intensity is proportional to 
|P|2 (given by (1.32)) that, as we will see, could have been written down immedi-
ately. Thus, we can write the scattered wave as 

 sc ,E FP=  (1.30) 

where the magnitude of F2 is proportional to the incident intensity E0 and 

 
R

KF 01E= , (1.31) 

 ∑ −= s
sP rk ⋅iΔe , (1.32) 

summed over all scatterers, and 

 if kkk −=Δ . (1.33) 
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P can be called the (relative) scattering amplitude. 
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Fig. 1.26. Schematic for simpler discussion of scattering 

It is useful to follow up on the comment made above and give a simpler discus-
sion of scattering. Looking at Fig. 1.26, we see the path difference between the 
two beams is 2d = 2 rs sin θ. So the phase difference is 

 θθ
λ
πϕ sin2sin4

ss krr ==Δ , 

since |kf| = |ki| = k. Note also 

 θθπθπ sin2
2

cos
2

cos sss krkr =⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −=⋅Δ rk , 

which is the phase difference. We obtain for a continuous distribution of scatterers 

 ∫ Δ−= VrP ss d)()iexp( ρrk ⋅ , (1.34) 

where we have assumed each scatterer scatters proportionally to its density. 
We assume now the general case of a lattice with a basis of atoms, each atom 

with a distribution of electrons. The lattice points are located at 

 321 aaaR nmppmn ++= , (1.35) 

where p, m and n are integers and a1, a2, a3 are the fundamental translation vectors 
of the lattice. For each Rpmn there will be a basis at 

 321 aaaR jjjj cba ++= , (1.36) 

where j = 1 to q for q atoms per unit cell and aj, bj, cj are numbers that are gener-
ally not integers. Starting at Rj we can assume the electrons are located at rs so the 
electron locations are specified by 

 sjpmn rRRr ++= , (1.37) 
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Fig. 1.27. Vector diagram of electron positions for X-ray scattering 

as shown in Fig. 1.27. Relative to Rj then the electron’s position is 

 jpmns RRrr −−= . 

If we let ρj (r) be the density of electrons of atom j then the total density of elec-
trons is 

 ∑ ∑ = −−= pmn
q
j pmnjj1 )()( RRrr ρρ . (1.38) 

By a generalization of (1.34) we can write the scattering amplitude as 

 .de)( iΔ∑ ∑ ∫ −−−= pmn j pmnjj VP rkRRr ⋅ρ  (1.39) 

Making a dummy change of integration variable and using (1.37) (dropping s on 
rs) we write 

 ∑ ∑ ∫ ⎟
⎠
⎞⎜

⎝
⎛= −−

pmn j j VP jpmn de)(ee iΔiΔiΔ rkRkRk r ⋅⋅⋅ ρ . 

For N 3 unit cells the lattice factor separates out and we will show below that 

 k
GRk Δ3)iexp(

hkl
Npmn pmn δ=⋅Δ−∑ , 

where as defined below, the G are reciprocal lattice vectors. So we find 

 hklSNP
hkl
k

G
Δ3δ= , (1.40) 

where Shkl is the structure factor defined by 

 ∑ −= j
hkl
jhkl fS jhkl RG ⋅ie , (1.41) 

and fj is the atomic form factor defined by 

 ∫ −= Vf hklj
hkl
j de)( i rGr ⋅ρ . (1.42) 

Since nuclei do not interact appreciably with X-rays, ρj (r) is only determined by 
the density of electrons as we have assumed. Equation (1.42) can be further sim-
plified for ρj (r) representing a spherical distribution of electrons and can be 
worked out if its functional form is known, such as ρj (r) = (constant) exp(–λr). 
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This is the general case. Let us work out the special case of a lattice of point 
scatterers where fj = 1 and Rj = 0. For this case, as in a three-dimension diffraction 
grating (crystal lattice), it is useful to introduce the concept of a reciprocal lattice. 
This concept will be used throughout the book in many different contexts. The ba-
sis vectors bj for the reciprocal lattice are defined by the set of equations 

 ijji δ=ba ⋅ , (1.43) 

where i, j → 1 to 3 and δij is the Kronecker delta. The reciprocal lattice is then de-
fined by 

 )(2 321 bbbG lkhhkl ++= π , (1.44) 

where h, k, l are integers.13 As an aside, we mention that we can show that 

 321
1 aab ×
Ω

=  (1.45) 

plus cyclic changes where Ω = a1 ⋅ (a2 × a3) is the volume of a unit cell in direct 
space. It is then easy to show that the volume of a unit cell in reciprocal space is 

 
Ω

Ω 1)( 321RL == bbb ×⋅ . (1.46) 

The vectors b1, b2, and b3 span three-dimensional space, so Δk can be expanded in 
terms of them, 

 )(2Δ 321 bbbk lkh ++= π , (1.47) 

where now h, k, l are not necessarily integers. Due to (1.43) we can write 

 )(2Δ lnmkphpmn ++=⋅ πkR , (1.48) 

with p, m, n still being integers. Using (1.32) with rs = Rpmn, (1.48), and assuming 
a lattice of N3 atoms, the structure factor can be written: 
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This can be evaluated by the law of geometric progressions. We find: 
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For a real lattice N is very large, so we assume N → ∞ and then if h, k, l are not 
integers |P| is negligible. If they are integers, each factor is N2 so 

 integers
,,

62|| lkhNP δ= . (1.51) 

                                                           
13 Alternatively, as is often done, we could include a 2π in (1.43) and remove the multipli-

cative factor on the right-hand side of (1.44). 



1.2 Group Theory and Crystallography      37 

 

Thus for a lattice of point ions then, the diffraction peaks occur for 

 )(2Δ 321 bbbGkkk lkhhklif ++==−= π , (1.52) 

where h, k, and l are now integers. 

 

Δk = G′θ θ
θ

ki kf

 
Fig. 1.28. Wave vector–reciprocal lattice relation for diffraction peaks 

Thus the X-ray diffraction peaks directly determine the reciprocal lattice that in 
turn determines the direct lattice. For diffraction peaks (1.51) is valid. Let 
Ghkl = nG′h′k′l′, where now h′, k′, l′ are Miller indices and G′h′k′l′ is the shortest vec-
tor in the direction of Ghkl. Ghkl is perpendicular to (h, k, l) plane, and we show in 
Problem 1.10 that the distance between adjacent such planes is 
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hkld
′′′′

=
G

π2 . (1.53) 

Thus 

 
hkl

lkh d
nnk πθ 2||sin2|| =′== ′′′GG , (1.54) 

so since k = 2π/λ, 

 θλ sin2 hkldn = , (1.55) 

which is Bragg’s equation. 
So far our discussion has assumed a rigid fixed lattice. The effect of tempera-

ture on the lattice can be described by the Debye–Waller factor. We state some re-
sults but do not derive them as they involve lattice-vibration concepts discussed in 
Chap. 2.14 The results for intensity are: 

 W
TII 2

0e−
== , (1.56) 

where D(T) = e–2W, and W is known as the Debye–Waller factor. If K = k – k′, 
where |k| = |k′| are the incident and scattered wave vectors of the X-rays, and if 

                                                           
14 See, e.g., Ghatak and Kothari [1.9]. 
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e(q, j) is the polarization vector of the phonons (see Chap. 2) in the mode j with 
wave vector q, then one can show14, 15 that the Debye–Waller factor is 
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where N is the number of atoms, M is their mass and ωj(q) is the frequency of 
vibration of phonons in mode j, wave vector q. One can further show that in the 
Debye approximation (again discussed in Chap. 2): At low temperature (T << θD) 
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and at high temperature (T >> θD) 
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W
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∝= 232
θθ=

, (1.59) 

where θD is the Debye Temperature defined from the cutoff frequency in the De-
bye approximation (see Sect. 2.3.3). The effect of temperature is to reduce inten-
sity but not broaden lines. Even at T = 0 the Debye–Waller factor is not unity so 
there is always some “diffuse” scattering, in addition to the diffraction. 

As an example of the use of the structure factor, we represent the bcc lattice as 
a sc lattice with a basis. Let the simple cubic unit cell have side a. Consider a ba-
sis at R0 = (0,0,0)a, R1 = (1,1,1)a/2. The structure factor is 

 .)1(e 10
2/)(2i

10
lkhalkh

hkl ffffS ++++− −+=+= π  (1.60) 

Suppose also the atoms at R0 and R1 are identical, then f0 = f1 = f so 
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 (1.61) 

The nonvanishing structure factor ends up giving results identical to a bcc lattice. 
 

Problems 

1.1. Show by construction that stacked regular pentagons do not fill all two-
dimensional space. What do you conclude from this? Give an example of 
a geometrical figure that when stacked will fill all two-dimensional space. 

1.2. Find the Madelung constant for a one-dimensional lattice of alternating, 
equally spaced positive and negative charged ions. 

                                                           
15 See Maradudin et al [1.16] 
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1.3. Use the Evjen counting scheme [1.19] to evaluate approximately the Made-
lung constant for crystals with the NaCl structure. 

1.4. Show that the set of all rational numbers (without zero) forms a group under 
the operation of multiplication. Show that the set of all rational numbers 
(with zero) forms a group under the operation of addition. 

1.5. Construct the group multiplication table of D4 (the group of three dimen-
sional rotations that map a square into itself). 

1.6. Show that the set of elements (1, –1, i, –i) forms a group when combined un-
der the operation of multiplication of complex numbers. Find a geometric 
group that is isomorphic to this group. Find a subgroup of this group. Is the 
whole group cyclic? Is the subgroup cyclic? Is the whole group abelian? 

1.7. Construct the stereograms for the point groups 4(C4) and 4mm(C4v). Explain 
how all elements of each group are represented in the stereogram (see 
Table 1.3). 

1.8. Draw a bcc (body-centered cubic) crystal and draw in three crystal planes 
that are neither parallel nor perpendicular. Name these planes by the use of 
Miller indices. Write down the Miller indices of three directions, which are 
neither parallel nor perpendicular. Draw in these directions with arrows. 

1.9. Argue that electrons should have energy of order electron volts to be dif-
fracted by a crystal lattice. 

1.10. Consider lattice planes specified by Miller indices (h, k, l) with lattice spac-
ing determined by d(h,k,l). Show that the reciprocal lattice vectors G(h,k,l) 
are orthogonal to the lattice plane (h,k,l) and if G(h,k,l) is the shortest such 
reciprocal lattice vector then 

 2
( , , )

( , , )
d h k l

h k l
=

G

π . 

1.11. Suppose a one-dimensional crystal has atoms located at nb and αmb where n 
and m are integers and α is an irrational number. Show that sharp Bragg 
peaks are still obtained. 

1.12. Find the Bragg peaks for a grating with a modulated spacing. Assume the 
grating has a spacing 

 )2sin( knbbnbdn πε+= , 

where ε is small and kb is irrational. Carry your results to first order in ε and 
assume that all scattered waves have the same geometry. You can use the 
geometry shown in the figure of this problem. The phase φn of scattered 
wave n at angle θ is 

 2
sinn ndϕ = π θ

λ
, 
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where λ is the wavelength. The scattered intensity is proportional to the 
square of the scattered amplitude, which in turn is proportional to 

 ∑≡ N
nE 0 )iexp( ϕ  

for N+1 scattered wavelets of equal amplitude. 

d2

d2sinθ

θ

 
1.13. Find all Bragg angles less than 50 degrees for diffraction of X-rays with 

wavelength 1.5 angstroms from the (100) planes in potassium. Use a conven-
tional unit cell with structure factor. 

 
 
 



 

 

2  Lattice Vibrations and Thermal Properties 

Chapter 1 was concerned with the binding forces in crystals and with the manner 
in which atoms were arranged. Chapter 1 defined, in effect, the universe with 
which we will be concerned. We now begin discussing the elements of this uni-
verse with which we interact. Perhaps the most interesting of these elements are 
the internal energy excitation modes of the crystals. The quanta of these modes are 
the “particles” of the solid. This chapter is primarily devoted to a particular type 
of internal mode – the lattice vibrations. 

The lattice introduced in Chap. 1, as we already mentioned, is not a static struc-
ture. At any finite temperature there will be thermal vibrations. Even at absolute 
zero, according to quantum mechanics, there will be zero-point vibrations. As we 
will discuss, these lattice vibrations can be described in terms of normal modes 
describing the collective vibration of atoms. The quanta of these normal modes 
are called phonons. 

The phonons are important in their own right as, e.g., they contribute both to 
the specific heat and the thermal conduction of the crystal, and they are also im-
portant because of their interaction with other energy excitations. For example, the 
phonons scatter electrons and hence cause electrical resistivity. Scattering of pho-
nons, by whatever mode, in general also limits thermal conductivity. In addition, 
phonon–phonon interactions are related to thermal expansion. Interactions are the 
subject of Chap. 4. 

We should also mention that the study of phonons will introduce us to wave 
propagation in periodic structures, allowed energy bands of elementary excitations 
propagating in a crystal, and the concept of Brillouin zones that will be defined 
later in this chapter. 

There are actually two main reservoirs that can store energy in a solid. Besides 
the phonons or lattice vibrations, there are the electrons. Generally, we start out by 
discussing these two independently, but this is an approximation. This approxima-
tion is reasonably clear-cut in insulators, but in metals it is much harder to justify. 
Its intellectual framework goes by the name of the Born–Oppenheimer approxi-
mation. This approximation paves the way for a systematic study of solids in 
which the electron–phonon interactions can later be put in, often by perturbation 
theory. In this chapter we will discuss a wide variety of lattice vibrations in one 
and three dimensions. In three dimensions we will also discuss the vibration prob-
lem in the elastic continuum approximation. Related topics will follow: in Chap. 3 
electrons moving in a static lattice will be considered, and in Chap. 4 electron–
phonon interactions (and other topics). 
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2.1  The Born–Oppenheimer Approximation (A) 

The most fundamental problem in solid-state physics is to solve the many-particle 
Schrödinger wave equation, 

 
t∂

∂= ψψ =icH , (2.1) 

where Hc is the crystal Hamiltonian defined by (2.3). In a sense, this equation is 
the “Theory of Everything” for solid-state physics. However, because of the 
many-body problem, solutions can only be obtained after numerous approxima-
tions. As mentioned in Chap. 1, P. W. Anderson has reminded us, “more is differ-
ent!” There are usually emergent properties at higher levels of complexity [2.1]. In 
general, the wave function ψ is a function of all electronic and nuclear coordinates 
and of the time t. That is, 

 ),,( tli Rrψψ = , (2.2) 

where the ri are the electronic coordinates and the Rl are the nuclear coordinates. 
The Hamiltonian Hc of the crystal is 
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In (2.3), m is the electronic mass, Ml is the mass of the nucleus located at Rl, Zl is 
the atomic number of the nucleus at Rl, and e has the magnitude of the electronic 
charge. The sums over i and j run over all electrons.1 The prime on the third term 
on the right-hand side of (2.3) means the terms i = j are omitted. The sums over l 
and l′ run over all nuclear coordinates and the prime on the sum over l and l′ 
means that the l = l′ terms are omitted. The various terms all have a physical inter-
pretation. The first term is the operator representing the kinetic energy of the elec-
trons. The second term is the operator representing the kinetic energy of the nu-
clei. The third term is the Coulomb potential energy of interaction between the 
electrons. The fourth term is the Coulomb potential energy of interaction between 
the electrons and the nuclei. The fifth term is the Coulomb potential energy of in-
teraction between the nuclei. 

                                                           
1 Had we chosen the sum to run over only the outer electrons associated with each atom, 

then we would have to replace the last term in (2.3) by an ion–ion interaction term. This 
term could have three and higher body interactions as well as two-body forces. Such a 
procedure would be appropriate [51, p. 3] for the practical discussion of lattice vibra-
tions. However, we shall consider only two-body forces. 
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In (2.3) internal magnetic interactions are left out because of their assumed 
smallness. This corresponds to neglecting relativistic effects. In solid-state phys-
ics, it is seldom necessary to assign a structure to the nucleus. It is never necessary 
(or possible) to assign a structure to the electron. Thus in (2.3) both electrons and 
nuclei are treated as point charges. Sometimes it will be necessary to allow for the 
fact that the nucleus can have nonzero spin, but this is only when much smaller 
energy differences are being considered than are of interest now. Because of sta-
tistics, as will be evident later, it is usually necessary to keep in mind that the elec-
tron is a spin 1/2 particle. For the moment, it is necessary to realize only that the 
wave function of (2.2) is a function of the spin degrees of freedom as well as of 
the space degrees of freedom. If we prefer, we can think of ri in the wave function 
as symbolically labeling all the coordinates of the electron. That is, ri gives both 
the position and the spin. However, ∇i

2 is just the ordinary spatial Laplacian. 
For purposes of shortening the notation it is convenient to let TE be the kinetic 

energy of the electrons, TN be the kinetic energy of the nuclei, and U be the total 
Coulomb energy of interaction of the nuclei and the electrons. Then (2.3) becomes 

 NEc TUT ++=H . (2.4) 

It is also convenient to define 

 UT += E0H . (2.5) 

Nuclei have large masses and hence in general (cf. the classical equipartition theo-
rem) they have small kinetic energies. Thus in the expression Hc = H0 + TN, it 
makes some sense to regard TN as a perturbation on H0. However, for metals, 
where the electrons have no energy gap between their ground and excited states, it 
is by no means clear that TN should be regarded as a small perturbation on H0. At 
any rate, one can proceed to make expansions just as if a perturbation sequence 
would converge. 

Let M0 be a mean nuclear mass and define 
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then 
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N HKT = . (2.7) 

The total Hamiltonian then has the form 
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and the time-independent Schrödinger wave equation that we wish to solve is 

 ),(),(c lili E RrRr ψψ =H . (2.9) 

The time-independent Schrödinger wave equation for the electrons, if one as-
sumes the nuclei are at fixed positions Rl, is 

 ),(),( 0
0 lili E RrRr φφ =H . (2.10) 

Born and Huang [46] have made a perturbation expansion of the solution of (2.9) 
in powers of K. They have shown that if the wave function is evaluated to second 
order in K, then a product separation of the form ψn(ri, Rl) = φn(ri)X(Rl) where n 
labels an electronic state, is possible. The assertion that the total wave function 
can be written as a product of the electronic wave function (depending only on 
electronic coordinates with the nuclei at fixed positions) times the nuclear wave 
function (depending only on nuclear coordinates with the electrons in some fixed 
state) is the physical content of the Born–Oppenheimer approximation (1927). In 
this approximation the electrons provide a potential energy for the motion of the 
nuclei while the moving nuclei continuously deform the wave function of the elec-
trons (rather than causing any sudden changes). Thus this idea is also called the 
adiabatic approximation. 

It turns out when the wave function is evaluated to second order in K that the 
effective potential energy of the nuclei involves nuclear displacements to fourth 
order and lower. Expanding the nuclear potential energy to second order in the 
nuclear displacements yields the harmonic approximation. Terms higher than sec-
ond order are called anharmonic terms. Thus it is possible to treat anharmonic 
terms and still stay within the Born–Oppenheimer approximation. 

If we evaluate the wave function to third order in K, it turns out that a simple 
product separation of the wave function is no longer possible. Thus the Born–
Oppenheimer approximation breaks down. This case corresponds to an effective 
potential energy for the nuclei of fifth order. Thus it really does not appear to be 
correct to assume that there exists a nuclear potential function that includes fifth 
or higher power terms in the nuclear displacement, at least from the viewpoint of 
the perturbation expansion. 

Apparently, in actual practice the adiabatic approximation does not break down 
quite so quickly as the above discussion suggests. To see that this might be so 
a somewhat simpler development of the Born–Oppenheimer approximation [46] is 
sometimes useful. In this development, we attempt to find a solution for ψ in (2.9) 
of the form 

 ∑= n linlnli ),()(),( RrRRr φψψ . (2.11) 

The φn are eigenfunctions of (2.10). Substituting into (2.9) gives 

 ∑∑ = n nnn nn E φψφψcH , 
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or 

 ∑∑∑ =+ n nnn nnn nn ET φψφψφψ N0H , 

or using (2.10) gives 

 ∑∑∑ =+ n nnn nnn nnn ETE φψφψφψ )(N
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we can write the above as 
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Multiplying the above equation by φn
* and integrating over the electronic coordi-

nates gives 

 0),()( 1 11
0
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(the sum over i goes from 1 to 3, labeling the x, y, and z components) and 
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The integration is over electronic coordinates. 
For stationary states, the φs can be chosen to be real and so it is easily seen that 

the diagonal elements of Q vanish: 
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From this we see that the effect of the diagonal elements of C is a multiplication 
effect and not an operator effect. Therefore the diagonal elements of C can be 
added to En

0  to give an effective potential energy Ueff.2 Equation (2.12) can be writ-
ten as 

 0)( )(effN 1 11 =+−+ ∑ ≠nn nnnn CEUT ψψ . (2.16) 

If the Cnn1 vanish, then we can split the discussion of the electronic and nuclear 
motions apart as in the adiabatic approximation. Otherwise, of course, we cannot. 
For metals there appears to be no reason to suppose that the effect of the C is neg-
ligible. This is because the excited states are continuous in energy with the ground 
state, and so the sum in (2.16) goes over into an integral. Perhaps the best way to 
approach this problem would be to just go ahead and make the Born–
Oppenheimer approximation. Then wave functions could be evaluated so that the 
Cnn1 could be evaluated. One could then see if the calculations were consistent, by 
seeing if the C were actually negligible in (2.16). 

In general, perturbation theory indicates that if there is a large energy gap be-
tween the ground and excited electronic states, then an adiabatic approximation 
may be valid. 

Can we even speak of lattice vibrations in metals without explicitly also discuss-
ing the electrons? The above discussion might lead one to suspect that the answer is 
no. However, for completely free electrons (whose wave functions do not depend at 
all on the Rl) it is clear that all the C vanish. Thus the presence of free electrons does 
not make the Born–Oppenheimer approximation invalid (using the concept of com-
pletely free electrons to represent any of the electrons in a solid is, of course, unreal-
istic). In metals, when the electrons can be thought of as almost free, perhaps the net 
effect of the C is small enough to be neglected in zeroth-order approximation. We 
shall suppose this is so and suppose that the Born–Oppenheimer approximation can 
be applied to conduction electrons in metals. But we should also realize that strange 
effects may appear in metals due to the fact that the coupling between electrons and 
lattice vibrations is not negligible. In fact, as we shall see in a later chapter, the mere 
presence of electrical resistivity means that the Born–Oppenheimer approximation 
is breaking down. The phenomenon of superconductivity is also due to this cou-
pling. At any rate, we can always write the Hamiltonian as H = H (electrons) + H 
(lattice vibrations) + H (coupling). It just may be that in metals, H (coupling) cannot 
always be regarded as a small perturbation. 

Finally, it is well to note that the perturbation expansion results depend on K 
being fairly small. If nature had not made the mass of the proton much larger than 
the mass of the electron, it is not clear that there would be any valid Born–
Oppenheimer approximation.3 

                                                           
2 We have used the terms Born–Oppenheimer approximation and adiabatic approximation 

interchangeably. More exactly, Born–Oppenheimer corresponds to neglecting Cnn, 
whereas in the adiabatic approximation Cnn is retained. 

3 For further details of the Born–Oppenheimer approximation, references [46], [82], [22, 
Vol 1, pp 611-613] and the references cited therein can be consulted. 
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2.2  One-Dimensional Lattices (B) 

Perhaps it would be most logical at this stage to plunge directly into the problem of 
solving quantum-mechanical three-dimensional lattice vibration problems either in 
the harmonic or in a more general adiabatic approximation. But many of the inter-
esting features of lattice vibrations are not quantum-mechanical and do not depend 
on three-dimensional motion. Since our aim is to take a fairly easy path to the un-
derstanding of lattice vibrations, it is perhaps best to start with some simple classi-
cal one-dimensional problems. The classical theory of lattice vibrations is due to 
M. Born, and Born and Huang [2.5] contains a very complete treatment. 

Even for the simple problems, we have a choice as to whether to use the har-
monic approximation or the general adiabatic approximation. Since the latter in-
volves quartic powers of the nuclear displacements while the former involves only 
quadratic powers, it is clear that the former will be the simplest starting place. For 
many purposes the harmonic approximation gives an adequate description of lat-
tice vibrations. This chapter will be devoted almost entirely to a description of lat-
tice vibrations in the harmonic approximation. 

A very simple physical model of this approximation exists. It involves a poten-
tial with quadratic displacements of the nuclei. We could get the same potential by 
connecting suitable springs (which obey Hooke’s law) between appropriate atoms. 
This in fact is an often-used picture. 

Even with the harmonic approximation there is still a problem as to what value 
we should assign to the “spring constants” or force constants. No one can answer 
this question from first principles (for a real solid). To do this we would have to 
know the electronic energy eigenvalues as a function of nuclear position (Rl). This 
is usually too complicated a many-body problem to have a solution in any useful 
approximation. So the “spring constants” have to be left as unknown parameters, 
which are determined from experiment or from a model that involves certain ap-
proximations. 

It should be mentioned that our approach (which we could call the unrestricted 
force constants approach) to discussing lattice vibration is probably as straight-
forward as any and it also is probably as good a way to begin discussing the lattice 
vibration problem as any. However, there has been a considerable amount of pro-
gress in discussing lattice vibration problems beyond that of our approach. In 
large part this progress has to do with the way the interaction between atoms is 
viewed. In particular, the shell model4 has been applied with good results to ionic 
and covalent crystals.5 The shell model consists in regarding each atom as consist-
ing of a core (the nucleus and inner electrons) plus a shell. The core and shell are 
coupled together on each atom. The shells of nearest-neighbor atoms are coupled. 
Since the cores can move relative to the shells, it is possible to polarize the atoms. 
Electric dipole interactions can then be included in neighbor interactions. 

                                                           
4 See Dick and Overhauser [2.12]. 
5 See, for example, Cochran [2.9]. 
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Lattice vibrations in metals can be particularly difficult to treat by starting from 
the standpoint of force constants as we do. A special way of looking at lattice vi-
brations in metals has been given.6 Some metals can apparently be described by 
a model in which the restoring forces between ions are either of the bond-
stretching or axially symmetric bond-bending variety.7 

We have listed some other methods for looking at the vibrational problems in 
Table 2.1. Methods, besides the Debye approximation (Sect. 2.3.3), for approxi-
mating the frequency distribution include root sampling and others [2.26, 
Chap. 3]. Montroll8 has given an elegant way for estimating the frequency distri-
bution, at least away from singularities. This method involves taking a trace of the 
Dynamical Matrix (2.3.2) and is called the moment-trace method. Some later ref-
erences for lattice dynamics calculations are summarized in Table 2.1. 

Table 2.1. References for Lattice vibration calculations 

Lattice vibrational 
calculations 

Reference 

Einstein Kittel [23, Chap. 5] 

Debye Chap. 2, this book 

Rigid Ion Models Bilz and Kress [2.3] 

Shell Model Jones and March [2.20, Chap. 3]. Also footnotes 4 and 5. 

ab initio models Kunc et al [2.22]. 
Strauch et al [2.33]. Density Functional Techniques are used 
(see Chap. 3). 

General reference Maradudin et al [2.26]. See also Born and Huang [46] 

2.2.1  Classical Two-Atom Lattice with Periodic Boundary Conditions 
(B) 

We start our discussion of lattice vibrations by considering the simplest problem 
that has any connection with real lattice vibrations. Periodic boundary conditions 
will be used on the two-atom lattice because these are the boundary conditions 
that are used on large lattices where the effects of the surface are relatively unim-
portant. Periodic boundary conditions mean that when we come to the end of the 
lattice we assume that the lattice (including its motion) identically repeats itself. It 
will be assumed that adjacent atoms are coupled with springs of spring constant γ. 
Only nearest-neighbor coupling will be assumed (for a two-atom lattice, you 
couldn’t assume anything else). 
                                                           
6 See Toya [2.34]. 
7 See Lehman et al [2.23]. For a more general discussion, see Srivastava [2.32]. 
8 See Montroll [2.28]. 



2.2 One-Dimensional Lattices (B)      49 

 

As should already be clear from the Born–Oppenheimer approximation, in 
a lattice all motions of sufficiently small amplitude are describable by Hooke’s 
law forces. This is true no matter what the physical origin (ionic, van der Waals, 
etc.) of the forces. This follows directly from a Taylor series expansion of the po-
tential energy using the fact that the first derivative of the potential evaluated at 
the equilibrium position must vanish. 

The two-atom lattice is shown in Fig. 2.1, where a is the equilibrium separation 
of atoms, x1 and x2 are coordinates measuring the displacement of atoms 1 and 2 
from equilibrium, and m is the mass of atom 1 or 2. The idea of periodic boundary 
conditions is shown by repeating the structure outside the vertical dashed lines. 

With periodic boundary conditions, Newton’s second law for each of the two 
atoms is 

 . )()(
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 (2.17) 

In (2.17), each dot means a derivative with respect to time. 
Solutions of (2.17) will be sought in which both atoms vibrate with the same 

frequency. Such solutions are called normal mode solutions (see Appendix B). 
Substituting 

 )iexp( tux nn ω=  (2.18) 

in (2.17) gives 

 
. )()(
, )()(

12212
2

21121
2

uuuumu
uuuumu

−−−=−
−−−=−

γγω
γγω  (2.19) 

Equation (2.19) can be written in matrix form as 
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Fig. 2.1. The two-atom lattice (with periodic boundary conditions schematically indicated) 
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For nontrivial solutions (u1 and u2 not both equal to zero) of (2.20) the determi-
nant (written det below) of the matrix of coefficients must be zero or 

 0
22

22det 2

2
=

⎥
⎥
⎦

⎤

⎢
⎢
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⎡

−−
−−

m
m

ωγγ
γωγ . (2.21) 

Equation (2.21) is known as the secular equation, and the two frequencies that 
satisfy (2.21) are known as eigenfrequencies. 

These two eigenfrequencies are 

 02
1 =ω , (2.22) 

and 

 m/42
2 γω = . (2.23) 

For (2.22), u1 = u2 and for (2.23), 

 2121 or          2)42( uuuu −==− γγγ . 

Thus, according to Appendix B, the normalized eigenvectors corresponding to the 
frequencies ω1 and ω2 are 

 
2
)1,1(

1 =E , (2.24) 

and 

 
2

)1,1(
2

−=E . (2.25) 

The first term in the row matrix of (2.24) or (2.25) gives the relative amplitude of 
u1 and the second term gives the relative amplitude of u2. Equation (2.25) says that 
in mode 2, u2/u1 = −1, which checks our previous results. Equation (2.24) de-
scribes a pure translation of the crystal. If we are interested in a fixed crystal, this 
solution is of no interest. Equation (2.25) corresponds to a motion in which the 
center of mass of the crystal remains fixed. 

Since the quantum-mechanical energies of a harmonic oscillator are En = 
(n + 1/2)ћω, where ω is the classical frequency of the harmonic oscillator, it follows 
that the quantum-mechanical energies of the fixed two-atom crystal are given by 

 
m

nEn
γ4

2
1 =⎟
⎠
⎞

⎜
⎝
⎛ += . (2.26) 

This is our first encounter with normal modes, and since we shall encounter 
them continually throughout this chapter, it is perhaps worthwhile to make a few 
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more comments. The sets E1 and E2 determine the normal coordinates of the nor-
mal mode. They do this by defining a transformation. In this simple example, the 
theory of small oscillations tells us that the normal coordinates are 
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22
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Note that X1, X2 are given by 
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X1 and X2 are the amplitudes of the normal modes. If we want the time-dependent 
normal coordinates, we would multiply the first set by exp(iω1t) and the second 
set by exp(iω2t). In most applications when we say normal coordinates it should 
be obvious which set (time-dependent or otherwise) we are talking about. 

The following comments are also relevant: 

1. In an n-dimensional problem with m atoms, there are (n⋅m) normal coordinates 
corresponding to nm different independent motions. 

2. In the harmonic approximation, each normal coordinate describes an independ-
ent mode of vibration with a single frequency. 

3. In a normal mode, all atoms vibrate with the same frequency. 

4. Any vibration in the crystal is a superposition of normal modes. 

2.2.2  Classical, Large, Perfect Monatomic Lattice, and Introduction to 
Brillouin Zones (B) 

Our calculation will still be classical and one-dimensional but we shall assume 
that our chain of atoms is long. Further, we shall give brief consideration to the 
possibility that the forces are not harmonic or nearest-neighbor. By a long crystal 
will be meant a crystal in which it is not very important what happens at the 
boundaries. However, since the crystal is finite, some choice of boundary condi-
tions must be made. Periodic boundary conditions (sometimes called Born–von 
Kárman or cyclic boundary conditions) will be used. These boundary conditions 
can be viewed as the large line of atoms being bent around to form a ring (al-
though it is not topologically possible analogously to represent periodic boundary 
conditions in three dimensions). A perfect crystal will mean here that the forces 
between any two atoms depend only on the separation of the atoms and that there 
are no defect atoms. Perfect monatomic further implies that all atoms are identical. 

N atoms of mass M will be assumed. The equilibrium spacing of the atoms will 
be a. xn will be the displacement of the nth atom from equilibrium. V will be the 
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potential energy of the interacting atoms, so that V = V(x1,…,xn). By the Born–
Oppenheimer approximation it makes sense to expand the potential energy to 
fourth order in displacements: 
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 (2.27) 

In (2.27), V(0,…,0) is just a constant and the zero of the potential energy can be 
chosen so that this constant is zero. The first-order term (∂V/∂x)(x1,…,xN)=0 is the 
negative of the force acting on atom n in equilibrium; hence it is zero and was left 
out of (2.27). The second-order terms are the terms that one would use in the har-
monic approximation. The last two terms are the anharmonic terms. 

Note in the summations that there is no restriction that says that n′ and n must 
refer to adjacent atoms. Hence (2.27), as it stands, includes the possibility of 
forces between all pairs of atoms. 

The dynamical problem that (2.27) gives rise to is only exactly solvable in 
closed form if the anharmonic terms are neglected. For small oscillations, their ef-
fect is presumably much smaller than the harmonic terms. The cubic and higher-
order terms are responsible for certain effects that completely vanish if they are 
left out. Whether or not one can neglect them depends on what one wants to de-
scribe. We need anharmonic terms to explain thermal expansion, a small correc-
tion (linear in temperature) to the specific heat of an insulator at high tempera-
tures, and the thermal resistivity of insulators at high temperatures. The effect of 
the anharmonic terms is to introduce interactions between the various normal 
modes of the lattice vibrations. A separate chapter is devoted to interactions and 
so they will be neglected here. This still leaves us with the possibility of forces of 
greater range than nearest-neighbors. 

It is convenient to define 
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Vn,n′ has several properties. The order of taking partial derivatives doesn’t matter, 
so that 

 nnnn VV ,, ′′ = . (2.29) 
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Two further restrictions on the V may be obtained from the equations of mo-
tion. These equations are simply obtained by Lagrangian mechanics [2]. From our 
model, the Lagrangian is 

 ∑∑ ′ ′′−= nn nnnnn n xxVxML , ,2
12)2/( � . (2.30) 

The sums extend over the one-dimensional crystal. The Lagrange equations are 

 0
d
d =

∂
∂−

∂
∂

nn x
L

x
L

t �
. (2.31) 

The equation of motion is easily found by combining (2.30) and (2.31): 

 nn nnn xVxM ′′ ′∑−= ,�� . (2.32) 

If all atoms are displaced a constant amount, this corresponds to a translation of 
the crystal, and in this case the resulting force on each atom must be zero. There-
fore 

 0, =∑ ′ ′n nnV . (2.33) 

If all atoms except the kth are at their equilibrium position, then the force on the 
nth atom is the force acting between the kth and nth atoms, 

 knkn xVxMF −== �� . 

But because of periodic boundary conditions and translational symmetry, this 
force can depend only on the relative positions of n and k, and hence on their dif-
ference, so that 

 )(, knVV kn −= . (2.34) 

With these restrictions on the V in mind, the next step is to solve (2.32). 
Normal mode solutions of the form 

 t
nn ux ωie=  (2.35) 

will be sought. The un are assumed to be time independent. Substituting (2.35) 
into (2.32) gives 

 0)(2 =−′−≡ ∑ ′ ′n nnn unnVuMpu ω . (2.36) 

Equation (2.36) is a difference equation with constant coefficients. Note that 
a new operator p is defined by (2.36). 

This difference equation has a nice property due to its translational symmetry. 
Let n go to n + 1 in (2.36). We obtain 

 0)1(1
2 =−−′−∑ ′ ′+ n nn unnVuMω . (2.37) 
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Then make the change n′ → n′ + 1 in the dummy variable of summation. Because 
of periodic boundary conditions, no change is necessary in the limits of summa-
tion. We obtain 

 0)( 11
2 =−′−∑ ′ +′+ n nn unnVuMω . (2.38) 

Comparing (2.36) and (2.38) we see that if pun = 0, then pun+1 = 0. If pf = 0 had 
only one solution, then it follows that 

 n
qa

n uu i
1 e=+ , (2.39) 

where eiqa is some arbitrary constant K, that is, q = ln(K/ia). Equation (2.39) is an 
expression of a very important theorem by Bloch that we will have occasion to 
discuss in great detail later. The fact that we get all solutions by this assumption 
follows from the fact that if pf = 0 has N solutions, then N linearly independent 
linear combinations of solutions can always be constructed so that each satisfies 
an equation of the form (2.39) [75]. 

By applying (2.39) n times starting with n = 0 it is readily seen that 

 0
ie uu qna

n = . (2.40) 

If we wish to keep un finite as n → ± ∞, then it is evident that q must be real. Fur-
ther, if there are N atoms, it is clear by periodic boundary conditions that un = u0, 
so that 

 mqNa π2= , (2.41) 

where m is an integer. 
Over a restricted range, each different value of m labels a different normal 

mode solution. We will show later that the modes corresponding to m and m + N 
are in fact the same mode. Therefore, all physically interesting modes are obtained 
by restricting m to be any N consecutive integers. A common such range is (sup-
posing N to be even) 

 2/1)2/( NmN ≤≤+− . 

For this range of m, q is restricted to 

 aqa // ππ ≤<− . (2.42) 

This range of q is called the first Brillouin zone. 
Substituting (2.40) into (2.36) shows that (2.40) is indeed a solution, provided 

that ωq satisfies 

 ∑ ′
−′−′= n

nnqa
q nnVM )(i2 e)(ω , 

or 
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q lV

M
i2 e)(1ω , (2.43) 
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or 

 ( )∑∞
−∞== lq alqlV

M
cos)(12ω , 

for an infinite crystal (otherwise the sum can run over appropriate limits specify-
ing the crystal). In getting the dispersion relation (2.43), use has been made of 
(2.29). 

Equation (2.43) directly shows one general property of the dispersion relation 
for lattice vibrations: 

 )()( 22 qq ωω =− . (2.44) 

Another general property is obtained by expanding ω2(q) in a Taylor series: 
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From (2.43), (2.33), and (2.34), 

 ∑ =∝ l lV 0)()0(2ω . 

From (2.44), ω2(q) is an even function of q and hence (ω2)′q=0 = 0. Thus for suffi-
ciently small q, 

 qqqq )constant ()(or          )constant ()( 22 == ωω . (2.46) 

Equation (2.46) is a dispersion relation for waves propagating without dispersion 
(that is, their group velocity dω/dq equals their phase velocity ω/q). This is the 
type of relation that is valid for vibrations in a continuum. It is not surprising that 
it is found here. The small q approximation is a low-frequency or long-wavelength 
approximation; hence the discrete nature of the lattice is unimportant. 

That small q can be thought of as indicating a long-wavelength is perhaps not 
evident. q (which is often called the wave vector) can be given the interpretation 
of 2π/λ, where λ is a wavelength, This is easily seen from the fact that the ampli-
tude of the vibration for the nth atom should equal the amplitude of vibration for 
the zeroth atom provided na = λ. 

In that case 

 00
i

0
i ee uuuu qqna

n === λ , 

so that q = 2π/λ. This equation for q also indicates why there is no unique q to  
describe a vibration. In a discrete (not continuous) lattice there are several wave-
lengths that will describe the same physical vibration. The point is that in order to 
describe the vibrations, we have to know only the value of a function at a discrete set 
of points and we do not care what values it takes on in between. There are obviously 
many distinct functions that have the same value at many discrete points. The idea is 
illustrated in Fig. 2.2. 
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Restricting q = 2π/λ to the first Brillouin zone is equivalent to selecting the 
range of q to have as small a |q| or as large a wavelength as possible. Letting q be-
come negative just means that the direction of propagation of the wave is re-
versed. In Fig. 2.2, (a) is a first Brillouin zone description of the wave, whereas 
(b) is not. 

It is worthwhile to get an explicit solution to this problem in the case where 
only nearest-neighbor forces are involved. This means that 

 1)or  0 (if      0)( ≠= llV . 

By (2.29) and (2.34), 

 )()( lVlV −=+ . 

By (2.33) and the nearest-neighbor assumption, 

 0)()0()( =−+++ lVVlV . 

Thus 
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By combining (2.47) with (2.43), we find that 
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or that 
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This is the dispersion relation for our problem. The largest value that ω can have 
is 
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V
c

)0(2=ω . (2.49) 

By (2.48) it is obvious that increasing q by 2π/a leaves the value of ω un-
changed. By (2.35), (2.40), (2.41), and (2.48), the displacement of the nth atom in 
the mth normal mode is given by 
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This is also invariant to increasing q = 2πm/Na by 2π/a. 
A plot of the dispersion relation (ω versus q) as given by (2.48) looks some-

thing like Fig. 2.3. In Fig. 2.3, we imagine N → ∞ so that the curve is defined by 
an almost continuous set of points. 
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For the two-atom case, the theory of small oscillations tells us that the normal 
coordinates (X1, X2) are found from the transformation 
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(b)

5λ 

 
Fig. 2.2. Different wavelengths describe the same vibration in a discrete lattice. (The dots 
represent atoms. Their displacement is indicated by the distance of the dots from the hori-
zontal axis.) (a) q = π/2a, (b) q = 5π/2a 
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Fig. 2.3. Frequency versus wave vector for a large one-dimensional crystal 

If we label the various components of the eigenvectors (Ei) by adding a subscript, 
we find that 

 ∑= j jiji xEX . (2.52) 
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The equations of motion of each Xi are harmonic oscillator equations of motion. 
The normal coordinate transformation reduced the two-atom problem to the prob-
lem of two decoupled harmonic oscillators. 

We also want to investigate if the normal coordinate transformation reduces the 
N-atom problem to a set of N decoupled harmonic oscillators. The normal coordi-
nates each vibrate with a time factor eiωt and so they must describe some sort of 
harmonic oscillators. However, it is useful for later purposes to demonstrate this 
explicitly. 

By analogy with the two-atom case, we expect that the normal coordinates in 
the N-atom case are given by 
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where 1/N 1/2 is a normalizing factor. This transformation can be inverted as fol-
lows: 
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In (2.54), the sum over m′ runs over any continuous range in m′ equivalent to 
one Brillouin zone. For convenience, this range can be chosen from 0 to N − 1. 
Then 
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If n′ = n, then ∑m′ just gives N. Therefore we can say in general that 
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Equations (2.54) and (2.55) together give 
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which is the desired inversion of the transformation defined by (2.53). 
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We wish to show now that this normal coordinate transformation reduces the 
Hamiltonian for the N interacting atoms to a Hamiltonian representing a set of N 
decoupled harmonic oscillators. The reason for the emphasis on the Hamiltonian 
is that this is the important quantity to consider in nonrelativistic quantum-
mechanical problems. This reduction not only shows that the ω are harmonic os-
cillator frequencies, but it gives an example of an N-body problem that can be ex-
actly solved because it reduces to N one-body problems. 

First, we must construct the Hamiltonian. If the Lagrangian L(qk , q·k , t) is ex-
pressed in terms of generalized coordinates qk and velocities q·k, then the canoni-
cally conjugate generalized momenta are defined by 
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H is defined by 

 ),,(),,( tqqLpqtqp kkj jjkk �� −= ∑H . (2.58) 

The equations of motion of the system can be obtained by Hamilton’s canonical 
equations, 
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If the constraints are independent of the time and if the potential V is independent 
of the velocity, then the Hamiltonian is just the total energy, T + V (T ≡ kinetic en-
ergy), and is constant. In this case we really do not need to use (2.58) to construct 
the Hamiltonian. 

From the above, the Hamiltonian of our system is 

 ∑∑ ′ ′′+= nn nnnnn n xxVxM
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As yet, no conditions requiring xn to be real have been inserted in the normal 
coordinate definitions. Since the xn are real, the normal coordinates, defined by 
(2.56), must satisfy 

 ∗
− = mm XX . (2.62) 

Similarly x· n  is real, and this implies that 

 ∗
− = mm XX �� . (2.63) 
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Substituting (2.56) into (2.61) yields 
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The last equation can be written 
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Using the results of Problem 2.2, we can write (2.64) as 
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or by (2.43), (2.62), and (2.63), 
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Equation (2.65) is practically the correct form. What is needed is an equation 
similar to (2.65) but with the X real. It is possible to find such an expression by 
making the following transformation: Define u and v so that 

 mmm ivuX += . (2.66) 

Since Xm
*  = X−m, it is seen that um = u−m and vm = −v−m. The second condition im-

plies that v0 = 0, and also because Xm = Xm+N that vN/2 = 0 (we are assuming that N 
is even). Therefore the number of independent u and v is 1+2(N/2−1)+1=N, as it 
should be. 

If the definitions 
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are made, then the z are real, there are N of them, and the Hamiltonian may be 
written, by (2.65), (2.66), and (2.67), 
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Equation (2.68) is explicitly the Hamiltonian for N uncoupled harmonic oscilla-
tors. This is what was to be proved. The allowed quantum-mechanical energies are 
then 

 ∑ +−= += 2/
1)2/( 2

1  )(N
Nm mmNE ω= . (2.69) 

By relabeling, the sum in (2.69) could just as well go from 0 to N − 1. The Nm are 
integers. 

2.2.3  Specific Heat of Linear Lattice (B) 

We will use the canonical ensemble to derive the specific heat of the one-
dimensional crystal.9 A good reference for the use of the canonical ensemble is 
Huang [11]. In a canonical ensemble calculation, we first calculate the partition 
function. The partition function and the Helmholtz free energy are related, and by 
use of this relation we can calculate all thermodynamic properties once the parti-
tion function is known. 

If the allowed quantum-mechanical states of the system are labeled by EM, then 
the partition function Z is given by 

 ∑ −= M M kTEZ )exp( . 

If there are N atoms in the linear lattice, and if we are interested only in the har-
monic approximation, then 
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N
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where the mn are integers. The partition function is then given by 
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Equation (2.70) can be rewritten as 
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9 The discussion of 1D (and 2D) lattices is perhaps mainly of interest because it sets up a 

formalism that is useful in 3D. One can show that the mean square displacement of 
atoms in 1D (and 2D) diverges in the phonon approximation. Such lattices are apparently 
inherently unstable. Fortunately, the mean energy does not diverge, and so the 
calculation of it in 1D (and 2D) perhaps makes some sense. However, in view of the 
divergence, things are not as simple as implied in the text. Also see a related comment on 
the Mermin–Wagner theorem in Chap. 7 (Sect. 7.2.5 under Two Dimensional 
Structures). 
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The result (2.71) is a consequence of a general property. Whenever we have 
a set of independent systems, the partition function can be represented as 
a product of partition functions (one for each independent system). In our case, the 
independent systems are the independent harmonic oscillators that describe the 
normal modes of the lattice vibrations. 

Since 1/(1 − α) = ∑0
∞  αn if |α| < 1, we can write (2.71) as 
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The relation between the Helmholtz free energy F and the partition function Z is 
given by 

 ZkTF ln−= . (2.73) 

Combining (2.72) and (2.73) we easily find 
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Using the thermodynamic formulas for the entropy S, 

 VTFS )( ∂∂−= , (2.75) 

and the internal energy U, 

 TSFU += , (2.76) 

we easily find an expression for U, 
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Equation (2.77) without the zero-point energy can be arrived at by much more in-
tuitive reasoning. In this formulation, the zero-point energy (ћ/2 ∑N

n  =1 ωn) does not 
contribute anything to the specific heat anyway, so let us neglect it. Call each en-
ergy excitation of frequency ωn and energy ћωn a phonon. Assume that the pho-
nons are bosons, which can be created and destroyed. We shall suppose that the 
chemical potential is zero so that the number of phonons is not conserved. In this 
situation, the mean number of phonons of energy ћωn (when the system has 
a temperature T) is given by 1/[exp(ћωn/kT − 1)]. Except for the zero-point en-
ergy, (2.77) now follows directly. Since (2.77) follows so easily, we might wonder 
if the use of the canonical ensemble is really worthwhile in this problem. In the 
first place, we need an argument for why phonons act like bosons of zero chemi-
cal potential. In the second place, if we had included higher-order terms (than the 
second-order terms) in the potential, then the phonons would interact and hence 
have an interaction energy. The canonical ensemble provides a straightforward 
method of including this interaction energy (for practical cases, approximations 
would be necessary). The simpler method does not. 
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The zero-point energy has zero temperature derivative, and so need not be con-
sidered for the specific heat. The indicated sum in (2.77) is easily done if N → ∞. 
Then the modes become infinitesimally close together, and the sum can be re-
placed by an integral. We can then write 
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where n(ω)dω is the number of modes (with q > 0) between ω and ω + dω. The 
factor 2 arises from the fact that for every (q) mode there is a (−q) mode of the 
same frequency. 

n(ω) is called the density of states and it can be evaluated from the appropriate 
dispersion relation, which is ωn = ωc |sin(πn/N)| for the nearest-neighbor approxi-
mation. To obtain the density of states, we differentiate the dispersion relation 
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Combining (2.78), (2.79), and the definition of specific heat at constant volume, 
we have 
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In the high-temperature limit this gives 
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Equation (2.81) is just a one-dimensional expression of the law of Dulong and 
Petit, which is also the classical limit. 
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2.2.4  Classical Diatomic Lattices: Optic and Acoustic Modes (B) 

So far we have considered only linear lattices in which all atoms are identical. 
There exist, of course, crystals that have more than one type of atom. In this Sec-
tion we will discuss the case of a linear lattice with two types of atoms in alternat-
ing positions. We will consider only the harmonic approximation with nearest-
neighbor interactions. By symmetry, the force between each pair of atoms is de-
scribed by the same spring constant. In the diatomic linear lattice we can think of 
each unit cell as containing two atoms of differing mass. It is characteristic of 
crystals with two atoms per unit cell that two types of mode occur. One of these 
modes is called the acoustic mode. In an acoustic mode, we think of adjacent at-
oms as vibrating almost in phase. The other mode is called the optic mode. In an 
optic mode, we think of adjacent atoms as vibrating out of phase. As we shall 
show, these descriptions of optic and acoustic modes are valid only in the long-
wavelength limit. In three dimensions we would also have to distinguish between 
longitudinal and transverse modes. Except for special crystallographic directions, 
these modes would not have the simple physical interpretation that their names 
suggest. The longitudinal mode is, usually, the mode with highest frequency for 
each wave vector in the three optic modes and also in the three acoustic modes. 

A picture of the diatomic linear lattice is shown in Fig. 2.4. Atoms of mass m 
are at x = (2n + 1)a for n = 0, ±1, ±2,..., and atoms of mass M are at x = 2na for n 
= 0, ± 1,... The displacements from equilibrium of the atoms of mass m are labeled 
d n

m  and the displacements from equilibrium of the atoms of mass M are labeled d n
M . 

The spring constant is k. 
From Newton’s laws10 
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It is convenient to define K1 = k/m and K2 = k/M. Then (2.82) can be written 
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10 When we discuss lattice vibrations in three dimensions we give a more general technique 

for handling the case of two atoms per unit cell. Using the dynamical matrix defined in 
that section (or its one-dimensional analog), it is a worthwhile exercise to obtain (2.87a) 
and (2.87b). 
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Fig. 2.4. The diatomic linear lattice 

Consistent with previous work, normal mode solutions of the form 
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and 
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will be sought. Substituting (2.84) into (2.83) and finding the coordinates of the 
atoms (xn) from Fig. 2.4, we have 
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or 

 )ee2( ii
1

2 qaqa BBAKA +− −−=ω , (2.85a) 

and 
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Equations (2.85) can be written in the form 
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Equation (2.86) has nontrivial solutions only if the determinant of the coefficient 
matrix is zero. This yields the two roots 
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and 

 qaKKKKKK 2
21

2
2121

2
2 sin4)()( −+++=ω . (2.87b) 

In (2.87) the symbol √ means the positive square root. In figuring the positive 
square root, we assume m < M or K1 > K2. As q → 0, we find from (2.87) that 

 )(2     and     0 2121 KK +== ωω . 

As q → (π/2a) we find from (2.87) that 

 1221 2     and     2 KK == ωω . 

Plots of (2.87) look similar to Fig. 2.5. In Fig. 2.5, ω1 is called the acoustic mode 
and ω2 is called the optic mode. The reason for naming ω1 and ω2 in this manner 
will be given later. The first Brillouin zone has −π/2a ≤ q ≤ π/2a. This is only half 
the size that we had in the monatomic case. The reason for this is readily apparent. 
In the diatomic case (with the same total number of atoms as in the monatomic 
case) there are two modes for every q in the first Brillouin zone, whereas in the 
monatomic case there is only one. For a fixed number of atoms and a fixed num-
ber of dimensions, the number of modes is constant. 

In fact it can be shown that the diatomic case reduces to the monatomic case 
when m = M. In this case K1 = K2 = k/m and 
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But note that cos qa for −π/2 < qa < 0 is the same as −cos qa for π/2 < qa < π, so 
that we can just as well combine ω1

2 and ω2
2 to give 

 )2/(sin)/4()cos1)(/2( 2 qamkqamk =−=ω  

for −π < qa < π. This is the same as the dispersion relation that we found for the 
linear lattice. 

The reason for the names optic and acoustic modes becomes clear if we exam-
ine the motions for small qa. We can write (2.87a) as 

 qa
KK

KK
)(

2

21

21
1 +

≅ω  (2.88) 

for small qa. Substituting (2.88) into (ω2 − 2K1)A + 2K1 cos (qa)B = 0, we find 
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Therefore in the long-wavelength limit of the ω1 mode, adjacent atoms vibrate in 
phase. This means that the mode is an acoustic mode. 
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Fig. 2.5. The dispersion relation for the optic and acoustic modes of a diatomic linear lattice 

 
Fig. 2.6. (a) Optic and (b) acoustic modes for qa very small (the long-wavelength limit) 

It is instructive to examine the ω1 solution (for small qa) still further: 
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For (2.90), ω1/q = dω/dq, the phase and group velocities are the same, and so there 
is no dispersion. This is just what we would expect in the long-wavelength limit. 

Let us examine the ω2 modes in the qa → 0 limit. It is clear that 
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Substituting (2.91) into (ω2 − 2K1)A + 2K1 cos (qa)B = 0 and letting qa = 0, we 
have 

 022 12 =+ BKAK ,  

or 

 0=+ MBmA . (2.92) 

Equation (2.92) corresponds to the center of mass of adjacent atoms being fixed. 
Thus in the long-wavelength limit, the atoms in the ω2 mode vibrate with a phase 
difference of π. Thus the ω2 mode is the optic mode. Suppose we shine electro-
magnetic radiation of visible frequencies on the crystal. The wavelength of this 
radiation is much greater than the lattice spacing. Thus, due to the opposite 
charges on adjacent atoms in a polar crystal (which we assume), the electromag-
netic wave would tend to push adjacent atoms in opposite directions just as they 
move in the long-wavelength limit of a (transverse) optic mode. Hence the elec-
tromagnetic waves would interact strongly with the optic modes. Thus we see 
where the name optic mode came from. The long-wavelength limits of optic and 
acoustic modes are sketched in Fig. 2.6 

In the small qa limit for optic modes by (2.91), 

 )/1/1(22 Mmk +=ω . (2.93) 

Electromagnetic waves in ionic crystals are very strongly absorbed at this fre-
quency. Very close to this frequency, there is a frequency called the restrahl fre-
quency where there is a maximum reflection of electromagnetic waves [93]. 

A curious thing happens in the q → π/2a limit. In this limit there is essentially 
no distinction between optic and acoustic modes. For acoustic modes as q → π/2a, 
from (2.86), 
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or as qa → π/2, 
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so that only M moves. In the same limit ω2 → (2K1)1/2, so by (2.86) 
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or 
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so that only m moves. The two modes are sketched in Fig. 2.7. Table 2.2 collects 
some one-dimensional results. 
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Fig. 2.7. (a) Optic and (b) acoustic modes in the limit qa → π/2 

Table 2.2. One-dimensional dispersion relations and density of states† 

Model Dispersion relation Density of states 

Monatomic 
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† q = wave vector, ω = frequency, a = distance between atoms. 

2.2.5  Classical Lattice with Defects (B) 

Most of the material in this Section was derived by Lord Rayleigh many years 
ago. However, we use more modern techniques (Green’s functions). The calcula-
tion will be done in one dimension, but the technique can be generalized to three 
dimensions. Much of the present formulation is due to A. A. Maradudin and co-
workers.11 

                                                           
11 See [2.39]. 
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The modern study of the vibration of a crystal lattice with defects was begun by 
Lifshitz in about 1942 [2.25] and Schaefer [2.29] has shown experimentally that lo-
cal modes do exist. Schaefer examined the infrared absorption of H− ions (impuri-
ties) in KCl. 

Point defects can cause the appearance of localized states. Here we consider lat-
tice vibrations and later (in Sect. 3.2.4) electronic states. Strong as well as weak per-
turbations can lead to interesting effects. For example, we discuss deep electronic 
effects in Sect. 11.2. In general, the localized states may be outside the bands and 
have discrete energies or inside a band with transiently bound resonant levels. 

In this Section the word defect is used in a rather specialized manner. The only 
defects considered will be substitutional atoms with different masses from those 
of the atoms of the host crystal. 

We define an operator p such that (compare (2.36)) 

 )2( 11
2

++ +−+= nnnnn uuuMupu γω , (2.94) 

where un is the amplitude of vibration of atom n, with mass M and frequency ω. 
For a perfect lattice (in the harmonic nearest-neighbor approximation with γ = 
Mωc

2 /4 = spring constant), 

 0=npu . 

This result readily follows from the material in Sect. 2.2.2. If the crystal has one 
or more defects, the equations describing the resulting vibrations can always be 
written in the form 

 ∑= k knkn udpu . (2.95) 

For example, if there is a defect atom of mass M 1 at n = 0 and if the spring con-
stants are not changed, then 

 0021)( knnk MMd δδω−= . (2.96) 

Equation (2.95) will be solved with the aid of Green’s functions. Green’s func-
tions (Gmn) for this problem are defined by 

 mnmnpG δ= . (2.97) 

To motivate the introduction of the Gmn, it is useful to prove that a solution to 
(2.95) is given by 

 ∑= kl kkllnn udGu , . (2.98) 

Since p operates on index n in pun, we have 

 ,,, ∑∑∑ === k knkkl kkllnkl kkllnn udududpGpu δ  

and hence (2.98) is a formal solution of (2.95). 
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The next step is to find an explicit expression for the Gmn. By the arguments of 
Sect. 2.2.2, we know that (we are supposing that there are N atoms, where N is an 
even number) 
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Since Gmn is determined by the lattice, and since periodic boundary conditions 
are being used, it should be possible to make a Fourier analysis of Gmn: 
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From the definition of p, we can write 
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To prove that we can find solutions of the form (2.100), we need only substitute 
(2.100) and (2.99) into (2.97). We obtain 
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Operating on both sides of the resulting equation with 
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Thus a G of the form (2.100) has been found provided that 
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By (2.100), Gmn is a function only of m − n, and, further by Problem 2.4, Gmn is 
a function only of |m − n|. Thus it is convenient to define 

 lmn GG = , (2.105) 

where l = |m − n| ≥ 0. 
It is possible to find a more convenient expression for G. First, define 
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2
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Then for a perfect lattice 
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so 

 1
2

11
2

−≥−≥
γ
ωM . (2.107) 

Thus when φ is real in (2.106), ω2 is restricted to the range defined by (2.107). 
With this definition, we can prove that a general expression for the Gn is12 

 ⎟
⎠
⎞

⎜
⎝
⎛ += φφφ

φγ
||sincos

2
cot

sin2
1 nnNGn . (2.108) 

The problem of a mass defect in a linear chain can now be solved. We define 
the relative change in mass e by 

 MMMe /)( 1−= , (2.109) 

with the defect mass M 1 assumed to be less than M for the most interesting case. 
Using (2.96) and (2.98), we have 

 0
2uMeGu nn ω= . (2.110) 

Setting n = 0 in (2.110), using (2.108) and (2.106), we have (assuming u0 ≠ 0, this 
limits us to modes that are not antisymmetric) 
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, 

                                                           
12 For the derivation of (2.108), see the article by Maradudin op cit (and references cited 

therein). 
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or 

 
2

tan
2

tan φφ eN = . (2.111) 

We would like to solve for ω2 as a function of e. This can be found from φ as a 
function of e by use of (2.111). For small e, we have 
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From (2.111), 
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Differentiating (2.111), we find 
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Combining (2.112), (2.113), and (2.114), we find 
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Therefore, for small e, we can write 
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74      2 Lattice Vibrations and Thermal Properties 

 

Using (2.106), we have 
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Using the half-angle formula sin2 θ/2 = (1 − cos θ)/2, we can recast (2.117) into 
the form 

 ⎟
⎠
⎞

⎜
⎝
⎛ +≅

N
e

N
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We can make several physical comments about (2.118). As noted earlier, if the 
description of the lattice modes is given by symmetric (about the impurity) and 
antisymmetric modes, then our development is valid for symmetric modes. Anti-
symmetric modes cannot be affected because u0 = 0 for them anyway and it can-
not matter then what the mass of the atom described by u0 is. When M > M 1, then 
e > 0 and all frequencies (of the symmetric modes) are shifted upward. When 
M < M 1, then e < 0 and all frequencies (of the symmetric modes) are shifted 
downward. There are no local modes here, but one does speak of resonant 
modes.13 When N → ∞, then the frequency shift of all modes given by (2.118) is 
negligible. Actually when N → ∞, there is one mode for the e > 0 case that is 
shifted in frequency by a non-negligible amount. This mode is the impurity mode. 
The reason we have not yet found the impurity mode is that we have not allowed 
the φ defined by (2.106) to be complex. Remember, real φ corresponds only to 
modes whose amplitude does not diminish. With impurities, it is reasonable to 
seek modes whose amplitude does change. Therefore, assume φ = π + iz (φ = π 
corresponds to the highest frequency unperturbed mode). Then from (2.111), 
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Since tan (A + B) = (tan A + tan B)/(1 − tan A tan B), then as N → ∞ (and remains 
an even number), we have 
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13 Elliott and Dawber [2.15]. 
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Combining (2.119), (2.120), and (2.121), we have 
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Equation (2.122) can be solved for z to yield 
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by (2.122). Combining (2.124) and (2.106), we find 

 )1/( 22
c

2 e−= ωω . (2.125) 

The mode with frequency given by (2.125) can be considerably shifted even if N 
→ ∞. The amplitude of the motion can also be estimated. Combining previous re-
sults and letting N → ∞, we find 
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This is truly an impurity mode. The amplitude dies away as we go away from the 
impurity. No new modes have been gained, of course. In order to gain a mode 
with frequency described by (2.125), we had to give up a mode with frequency 
described by (2.118). For further details see Maradudin et al [2.26 Sect. 5.5] 

2.2.6  Quantum-Mechanical Linear Lattice (B) 

In a previous Section we found the quantum-mechanical energies of a linear lat-
tice by first reducing the classical problem to a set of classical harmonic oscilla-
tors. We then quantized the harmonic oscillators. Another approach would be ini-
tially to consider the lattice from a quantum viewpoint. Then we transform to a set 
of independent quantum-mechanical harmonic oscillators. As we demonstrate be-
low, the two procedures amount to the same thing. However, it is not always true 
that we can get correct results by quantizing the Hamiltonian in any set of general-
ized coordinates [2.27]. 
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With our usual assumptions of nearest-neighbor interactions and harmonic 
forces, the classical Hamiltonian of the linear chain can be written 

 ∑∑ −+ −−+= l llllll lll xxxxxp
M

xp )2(
22

1),( 11
22 γ

H . (2.127) 

In (2.127), p1 = Mx· 1, and in the potential energy term use can always be made of 
periodic boundary conditions in rearranging the terms without rearranging the lim-
its of summation (for N atoms, xl = xl+N). The sum in (2.127) runs over the crystal, 
the equilibrium position of the lth atom being at la. The displacement from equi-
librium of the lth atom is xl and γ is the spring constant. 

To quantize (2.127) we associate operators with dynamical quantities. For 
(2.127), the method is clear because pl and xl are canonically conjugate. The mo-
mentum pl was defined as the derivative of the Lagrangian with respect to x· l. This 
implies that Poisson bracket relations are guaranteed to be satisfied. Therefore, 
when operators are associated with pl and xl, they must be associated in such 
a way that the commutation relations (analog of Poisson bracket relations) 

 l
lll ipx ′

′ = δ=],[  (2.128) 

are satisfied. One way to do this is to let 
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This is the choice that will usually be made in this book. 
The quantum-mechanical problem that must be solved is 
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In (2.130), ψ(x1"xn) is the wave function describing the lattice vibrational state 
with energy E. 

How can (2.130) be solved? A good way to start would be to use normal coor-
dinates just as in the Section on vibrations of a classical lattice. Define 
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X ie1 , (2.131) 

where q = 2πm/Na and m is an integer, so that 

 ∑ −= q q
alq

l X
N

x ie1 . (2.132) 

The next quantities that are needed are a set of new momentum operators that 
are canonically conjugate to the new coordinate operators. The simplest way to 
get these operators is to write down the correct ones and show they are correct by 
the fact that they satisfy the correct commutation relations: 
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lq p
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P ie1 , (2.133) 
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or 
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The fact that the commutation relations are still satisfied is easily shown: 
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Substituting (2.134) and (2.132) into (2.127), we find in the usual way that the 
Hamiltonian reduces to a fairly simple form: 

 ∑∑ −+= −− q qqq qq qaXXPP
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)cos1(
2
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Thus, the normal coordinate transformation does the same thing quantum-
mechanically as it does classically. 

The quantities Xq and X−q are related. Let † (dagger) represent the Hermitian 
conjugate operation. Then for all operators A that represent physical observables 
(e.g. pl), A† = A. The † of a scalar is equivalent to complex conjugation (*). 

Note that 

 ql
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lq Pp
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P −== ∑ i† e1 , 

and similarly that 

 qq XX −=† . 

From the above, we can write the Hamiltonian in a Hermitian form: 
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From the previous work on the classical lattice, it is already known that (2.137) 
represents a set of independent simple harmonic oscillators whose classical fre-
quencies are given by 

 )2sin(/2/)cos1(2 qaMMqaq γγω =−= . (2.138) 

However, if we like, we can regard (2.138) as a useful definition. Its physical in-
terpretation will become clear later on. With ωq defined by (2.138), (2.137) be-
comes 
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The Hamiltonian can be further simplified by introducing the two variables [99] 
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Let us compute [aq, a†
q 1]. By (2.140) and (2.141), 
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or in summary, 
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It is also interesting to compute ½Σq =ωq{aq, a†
q }, where {aq, a†

q } stands for the 
anticommutator; i.e. it represents aq a†
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and ωq = ω–q, we see that 

 ∑ =−q qqqqq XPXP 0)( ††ω= . 

Also [X †
q , Xq] = 0 and [P †

q , Pq] = 0, so that we obtain 
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Since the aq operators obey the commutation relations of (2.142) and by Prob-
lem 2.6, they are isomorphic (can be set in one-to-one correspondence) to the 
step-up and step-down operators of the harmonic oscillator [18, p349ff]. Since the 
harmonic oscillator is a solved problem so is (2.143). 

By (2.142) and (2.143) we can write 

 ∑ += q qqq aa )( 2
1†ω=H . (2.144) 

But from the quantum mechanics of the harmonic oscillator, we know that 

 1)1(† ++= qqqq nnna , (2.145) 

 1−= qqqq nnna . (2.146) 

Where |nq〉 is the eigenket of a single harmonic oscillator in a state with energy 
(nq + ½)=ωq, ωq is the classical frequency and nq is an integer. Equations (2.145) 
and (2.146) imply that 

 qqqq
†
q nnnaa = . (2.147) 

Equation (2.144) is just an operator representing a sum of decoupled harmonic os-
cillators with classical frequency ωq. Using (2.147), we find that the energy eigen-
values of (2.143) are 

 ∑ += q qq nE )( 2
1ω= . (2.148) 

This is the same result as was previously obtained. 
From relations (2.145) and (2.146) it is easy to see why aq

†  is often called 
a creation operator and aq is often called an annihilation operator. We say that aq

†  
creates a phonon in the mode q. The quantities nq are said to be the number of 
phonons in the mode q. Since nq can be any integer from 0 to ∞, the phonons are 
said to be bosons. In fact, the commutation relations of the aq operators are typical 
commutation relations for boson annihilation and creation operators. The Hamil-
tonian in the form (2.144) is said to be written in second quantization notation. 
(See Appendix G for a discussion of this notation.) The eigenkets |nq〉 are said to 
be kets in occupation number space. 
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With the Hamiltonian written in the form (2.144), we never really need to say 
much about eigenkets. All eigenkets are of the form 

 0)(
!

1 † qm
q

q
q a

m
m = , 

where |0〉 is the vacuum eigenket. More complex eigenkets are built up by taking 
a product. For example, |m1,m2〉 = |m1〉 |m2〉. States of the |mq〉, which are eigenkets 
of both the annihilation and creation operators, are often called coherent states. 

Let us briefly review what we have done in this section. We have found the ei-
genvalues and eigenkets of the Hamiltonian representing one-dimensional lattice 
vibrations in the harmonic and nearest-neighbor approximations. We have intro-
duced the concept of the phonon, but some more discussion of the term may well 
be in order. We also need to give some more meaning to the subscript q that has 
been used. For both of these purposes it is useful to consider the symmetry proper-
ties of the crystal as they are reflected in the Hamiltonian. 

The energy eigenvalue equation has been written 

 )()( 11 NN xxExx "" ψψ =H . 

Now suppose we define a translation operator Tm that translates the coordinates by 
ma. Since the Hamiltonian is invariant to such translations, we have 

 0],[ =mTH . (2.149) 

By quantum mechanics [18] we know that it is possible to find a set of functions 
that are simultaneous eigenfunctions of both Tm and H. In particular, consider the 
case m = 1. Then there exists an eigenket |E〉 such that 

 EEE =H , (2.150) 

and 

 EtET 1
1 = . (2.151) 

Clearly |t1| = 1 for (T1)N |E〉 = |E〉 by periodic boundary conditions, and this implies 
(t1)N = 1 or |t1| = 1. Therefore let 

 )iexp(1 akt q= , (2.152) 

where kq is real. Since |t1| = 1 we know that kqaN = pπ, where p is an integer. Thus 

 p
Na

kq ⋅= π2 , (2.153) 

and hence kq is of the same form as our old friend q. Statements (2.150) to (2.153) 
are equivalent to the already-mentioned Bloch’s theorem, which is a general theo-
rem for waves propagating in periodic media. For further proofs of Bloch’s theo-
rem and a discussion of its significance see Appendix C. 
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What is the q then? It is a quantum number labeling a state of vibration of the 
system. Because of translational symmetry (in discrete translations by a) the sys-
tem naturally vibrates in certain states. These states are labeled by the q quantum 
number. There is nothing unfamiliar here. The hydrogen atom has rotational 
symmetry and hence its states are labeled by the quantum numbers characterizing 
the eigenfunctions of the rotational operators (which are related to the angular 
momentum operators). Thus it might be better to write (2.150) and (2.151) as 

 qEEqE q ,, =H  (2.154) 

 qEqET akq ,e, i
1 = . (2.155) 

Incidentally, since |E,q〉 is an eigenket of T1 it is also an eigenket of Tm. This is 
easily seen from the fact that (T1)m = Tm. 

We now have a little better insight into the meaning of q. Several questions re-
main. What is the relation of the eigenkets |E,q〉 to the eigenkets |nq〉? They, in 
fact, can be chosen to be the same.14 This is seen if we utilize the fact that T1 can 
be represented by 

 )iexp( †
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Then it is seen that 
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Let us now choose the set of eigenkets that simultaneously diagonalize both the 
Hamiltonian and the translation operator (the |E,q〉) to be the |nq〉. Then we see that 

 qq nqk ⋅= . (2.158) 

This makes physical sense. If we say we have one phonon in mode q (which state 
we characterize by |1q〉) then 

 q
qa

qT 1e1 i
1 = , 

and we get the typical factor eiqa for Bloch’s theorem. However, if we have two 
phonons in mode q, then 

 q
qa

qT 2e2 )2(i
1 = , 

and the typical factor of Bloch’s theorem appears twice. 

                                                           
14 See, for example, Jensen [2.19] 
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The above should make clear what we mean when we say that a phonon is 
a quantum of a lattice vibrational state. 

Further insight into the nature of the q can be gained by taking the expectation 
value of x1 in a time-dependent state of fixed q. Define 

 〉−≡〉 ∑ qn nn ntECq
q qq |]))(/i(exp[| = . (2.159) 

We choose this state in order that the classical limit will represent a wave of fixed 
wavelength. Then we wish to compute 
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By previous work we know that 
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where the Xq can be written in terms of creation and annihilation operators as 
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Thus 
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By (2.145) and (2.146), we can write (2.164) as 
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Then by (2.160) we can write 
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In (2.166) we have used that 

 qqn nE q ω=)( 2
1+= . 

Now let us go to the classical limit. In the classical limit only those Cn for 
which nq is large are important. Further, let us suppose that Cn are very slowly 
varying functions of nq. Since for large nq we can write 

 1+≅ qq nn , 

 )](sin[)||(2
0

2 paqtCn
NM

qxq qn nq
q

p q q −= ∑∞
= ω

ω
= . (2.167) 

Equation (2.167) is similar to the equation of a running wave on a classical lattice 
where pa serves as the coordinate (it locates the equilibrium position of the vibrat-
ing atom), and the displacement from equilibrium is given by xp. In this classical 
limit then it is clear that q can be interpreted as 2π over the wavelength. 

In view of the similarity of (2.167) to a plane wave, it might be tempting to call 
=q the momentum of the phonons. Actually, this should not be done because pho-
nons do not carry momentum (except for the q = 0 phonon, which corresponds to 
a translation of the crystal as a whole). The q do obey a conservation law (as will 
be seen in the chapter on interactions), but this conservation law is somewhat dif-
ferent from the conservation of momentum. 

To see that phonons do not carry momentum, it suffices to show that 

 0tot =qq nPn , (2.168) 

where 

 ∑= l lpPtot . (2.169) 

By previous work 

 ∑= 1 1 )iexp()/1( 1
q ql laqPNp , 

and 
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Then 

0)()iexp(
2

†1
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∑ ∑ qqqql q qqtotq naanlaq

N
MnPn ω=  (2.170) 

by (2.145) and (2.146). The q1 → 0 mode can be treated by a limiting process. 
However, it is simpler to realize it corresponds to all the atoms moving together so 
it obviously can carry momentum. Anybody who has been hit by a thrown rock 
knows that. 
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2.3  Three-Dimensional Lattices 

Up to now only one-dimensional lattice vibration problems have been considered. 
They have the very great advantage of requiring only simple notation. The prolix-
ity of symbols is what makes the three-dimensional problems somewhat more 
cumbersome. Not too many new ideas come with the added dimensions, but nu-
merous superscripts and subscripts do. 

2.3.1  Direct and Reciprocal Lattices and Pertinent Relations (B) 

Let (a1, a2, a3) be the primitive translation vectors of the lattice. All points defined 
by 

 332211 aaaR llll ++= , (2.171) 

where (l1, l2, l3,) are integers, define the direct lattice. This vector will often be 
written as simply l. Let (b1, b2, b3) be three vectors chosen so that 

 ijji δ=⋅ ba . (2.172) 

Compare (2.172) to (1.38). The 2π could be inserted in (2.172) and left out of 
(2.173), which should be compared to (1.44). Except for notation, they are the 
same. There are two alternative ways of defining the reciprocal lattice. All points 
described by 

 )(2 332211 bbbG nnnn ++= π , (2.173) 

where (n1, n2, n3) are integers, define the reciprocal lattice (we will sometimes use 
K for Gn type vectors). Cyclic boundary conditions are defined on a fundamental 
parallelepiped of volume 

 )( 332211f.p.p. aaa NNNV ×⋅= , (2.174) 

where N1, N2, N3 are very large integers such that (N1)(N2)(N3) is of the order of 
Avogadro’s number. 

With cyclic boundary conditions, all wave vectors q (generalizations of the old 
q) in one dimension are given by 

 ])/()/()/[(2 333222111 bbbq NnNnNn ++= π . (2.175) 

The q are said to be restricted to a fundamental range when the ni in (2.175) are 
restricted to the range 

 2/2/ iii NnN <<− . (2.176) 

We can always add a Gn type vector to a q vector and obtain an equivalent vector. 
When the q in a fundamental range are modified (if necessary) by this technique 
to give a complete set of q that are closer to the origin than any other lattice point, 
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then the q are said to be in the first Brillouin zone. Any general vector in direct 
space is given by 

 332211 aaar ηηη ++= , (2.177) 

where the ηi are arbitrary real numbers. 
Several properties of the quantities defined by (2.171) to (2.177) can now be 

derived. These properties are results of what can be called crystal mathematics. 
They are useful for three-dimensional lattice vibrations, the motion of electrons in 
crystals, and any type of wave motion in a periodic medium. Since most of the re-
sults follow either from the one-dimensional calculations or from Fourier series or 
integrals, they will not be derived here but will be presented as problems (Problem 
2.11). However, most of these results are of great importance and are constantly 
used. 

The most important results are summarized below: 

1.  ∑ ∑=⋅
l n nlNNN R G GqRq ,

321
)iexp(1 δ . (2.178) 

2.  ∑ =⋅q RRq 0,
321

)iexp(1
llNNN

δ  (2.179) 

(summed over one Brillouin zone). 

3. In the limit as Vf.p.p → ∞, one can replace 

 ∑ ∫q q
V 3

3
f.p.p. d

)2(
by 

π
. (2.180) 

Whenever we speak of an integral over q space, we have such a limit in 
mind. 

4.  0,zoneBrillouin  one
3
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RRq δ
π

Ω
=⋅∫ , (2.181) 

where Ωa = a1 ⋅ a2 × a3 is the volume of a unit cell. 

5.  
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r
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where δ(r − r1) is the Dirac delta function. 
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2.3.2  Quantum-Mechanical Treatment and Classical Calculation 
of the Dispersion Relation (B) 

This Section is similar to Sect. 2.2.6 on one-dimensional lattices but differs in 
three ways. It is three-dimensional. More than one atom per unit cell is allowed. 
Also, we indicate that so far as calculating the dispersion relation goes, we may as 
well stick to the notation of classical calculations. The use of Rl will be dropped in 
this section, and l will be used instead. It is better not to have subscripts of sub-
scripts of…etc. 

l

Z

X 

Y

b

 
Fig. 2.8. Notation for three-dimensional lattices 

In Fig. 2.8, l specifies the location of the unit cell and b specifies the location of 
the atoms in the unit cell (there may be several b for each unit cell). 

The actual coordinates of the atoms will be dl,b and 

 )(,, bldx blbl +−=  (2.185) 

will be the coordinates that specify the deviation of the position of an atom from 
equilibrium. 

The potential energy function will be V(xl,b). In the equilibrium state, by defini-
tion, 

 0)( 0 all =∇ =blbl xx ,, V . (2.186) 

Expanding the potential energy in a Taylor series, and neglecting the anharmonic 
terms, we have 

 ∑+= ),(2
1

0 11 1111)( βα
βαβα

blbl blblblblbl xxx ,,,, JVV . (2.187) 
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In (2.187), xαl,b is the αth component of xl,b. V0 can be chosen to be zero, and this 
choice then fixes the zero of the potential energy. If plb is the momentum (opera-
tor) of the atom located at l + b with mass mb, the Hamiltonian can be written 
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In (2.188), summing over α or β corresponds to summing over three Cartesian co-
ordinates, and 
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The Hamiltonian simplifies much as in the one-dimensional case. We make a 
normal coordinate transformation or a Fourier analysis of the coordinate and mo-
mentum variables. The transformation is canonical, and so the new variables obey 
the same commutation relations as the old: 

 ∑ −= q
lq

bqbl Xx ⋅i1
,, e1

N
, (2.190) 

 ∑ += q
lq

bqbl Pp ⋅i1
,, e1

N
, (2.191) 

where N = N1N2N3. Since xl,b and pl,b are Hermitian, we must have 

 †1
,

1
, bqbq XX =− , (2.192) 

and 

 †1
,

1
, bqbq PP =− . (2.193) 

Substituting (2.190) and (2.191) into (2.188) gives 

 
.e1

e11

,,,,, ,
)(i1

,
1

,,,,2
1

, ,
)(i1

,
1
,2

1

11 1
11

1111

1
1

1

∑ ∑

∑ ∑

+−

+

+

⋅=

βα
βααβ

blbl qq
lqlq

bqbqblbl

bl qq
lqq

bqbq
b

PP

⋅⋅

⋅

XXJ
N

Nm
H

 (2.194) 
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Using (2.178) on the first term of the right-hand side of (2.194) we can write 
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 (2.195) 

The force between any two atoms in our perfect crystal cannot depend on the 
position of the atoms but only on the vector separation of the atoms. Therefore, we 
must have that 

 )( 1
,,,, 111 ll
bbblbl

−= αβαβ JJ . (2.196) 

Letting m = (l − l1), defining 

 mq
bbmbb

mq ⋅ie)()( 11
−∑= JK , (2.197) 

and again using (2.178), we find that the Hamiltonian becomes 

 ∑= q qHH , (2.198a) 

where 
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The transformation has used translational symmetry in decoupling terms in the 
Hamiltonian. The rest of the transformation depends on the crystal structure and is 
found by straightforward small vibration theory applied to each unit cell. If there 
are K particles per unit cell, then there are 3K normal modes described by (2.198). 
Let ωq,p, where p goes from 1 to 3K, represent the eigenfrequencies of the normal 
modes, and let eq,p,b be the components of the eigenvectors of the normal modes. 
The quantities eq,p,b allow us to calculate15 the magnitude and direction of vibra-
tion of the atom at b in the mode labeled by (q, p). The eigenvectors can be chosen 
to obey the usual orthogonality relation 

 11
*

p,ppp
δ=∑b bqbq

ee ⋅ . (2.199) 

It is convenient to allow for the possibility that eqpb is complex due to the fact that 
all we readily know about Hq is that it is Hermitian. A Hermitian matrix can al-
ways be diagonalized by a unitary transformation. A real symmetric matrix can 
always be diagonalized by a real orthogonal transformation. It can be shown that 

                                                           
15 The way to do this is explained later when we discuss the classical calculation of the dis-

persion relation. 
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with only one atom per unit cell the polarization vectors eqpb are real. We can 
choose e−q,p,b = e*

q,p,b in more general cases. 
Once the eigenvectors are known, we can make a normal coordinate transfor-

mation and hence diagonalize the Hamiltonian [99]: 

 ∑= b qbbqbq Xe 111
, ⋅pp mX . (2.200) 

The momentum 11
, pqP , which is canonically conjugate to (2.200), is 

 ∑= b qbbqbq PeP 1*11
, )/1( ⋅pp m . (2.201) 

Equations (2.200) and (2.201) can be inverted by use of the closure notation 
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1
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ee . (2.202) 

Finally, define 

 †11
,,

11
,,, )2/(2/1 ppppp XiPa qqqqq == ωω −= , (2.203) 

and a similar expression for a†
q,p. In the same manner as was done in the one-

dimensional case, we can show that 

 
11

],[ †
,,

pq
pp aa pqqq δδ= , (2.204) 

and that the other commutators vanish. Therefore the as are boson annihilation 
operators, and the a† are boson creation operators. In this second quantization no-
tation, the Hamiltonian reduces to a set of decoupled harmonic oscillators: 

 ∑ += p ppp aa, 2
1

,
†
,, )(q qqqω=H . (2.205) 

By (2.205) we have seen that the Hamiltonian can be represented by 3NK de-
coupled harmonic oscillators. This decomposition has been shown to be formally 
possible within the context of quantum mechanics. However, the only thing that 
we do not know is the dispersion relationship that gives ω as a function of q for 
each p. The dispersion relation is the same in quantum mechanics and classical 
mechanics because the calculation is the same. Hence, we may as well stay with 
classical mechanics to calculate the dispersion relation (except for estimating the 
forces), as this will generally keep us in a simpler notation. In addition, we do not 
know what the potential V is and hence the J and K ((2.189), (2.197)) are un-
known also. 

This last fact emphasizes what we mean when we say we have obtained a for-
mal solution to the lattice-vibration problem. In actual practice the calculation of 
the dispersion relation would be somewhat cruder than the above might lead one 
to suspect. We gave some references to actual calculations in the introduction to 
Sect. 2.2. One approach to the problem might be to imagine the various atoms 
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hooked together by springs. We would try to choose the spring constants so that 
the elastic constants, sound velocity, and the specific heat were given correctly. 
Perhaps not all the spring constants would be determined by this method. We 
might like to try to select the rest so that they gave a dispersion relation that 
agreed with the dispersion relation provided by neutron diffraction data (if avail-
able). The details of such a program would vary from solid to solid. 

Let us briefly indicate how we would calculate the dispersion relation for a 
crystal lattice if we were interested in doing it for an actual case. We suppose we 
have some combination of model, experiment, and general principles so the 

 αβ
11,,, blbl

J  

can be determined. We would start with the Hamiltonian (2.188) except that we 
would have in mind staying with classical mechanics: 
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We would use the known symmetry in J: 

 ., 11111111 ,),(,,,,,,,,,
αβαβαβαβ

bbllblblblblblbl −
== JJJJ  (2.207) 

It is also possible to show by translational symmetry (similarly to the way (2.33) 
was derived) that 

 011 11, ,,,
=∑ bl blbl

αβJ . (2.208) 

Other restrictions follow from the rotational symmetry of the crystal.16 
The equations of motion of the lattice are readily obtained from the Hamilto-

nian in the usual way. They are 

 ∑−= βbl blblblblb ,, ,,,,
11 1111

βαβα xJxm �� . (2.209) 

If we seek normal mode solutions of the form (whose real part corresponds to the 
physical solutions)17 

 lq
b

b
bl

⋅+−= tx
m

x ωαα i
, e1 , (2.210) 

                                                           
16 Maradudin et. al. [2.26]. 
17 Note that this substitution assumes the results of Bloch’s theorem as discussed after 

(2.39). 
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we find (using the periodicity of the lattice) that the equations of motion reduce to 

 ∑= β
βαβαω , ,,

2 1 11b bbbqb xMx , (2.211) 

where 

 αβ
1,, bbq

M  

is called the dynamical matrix and is defined by 
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These equations have nontrivial solutions provided that 

 0)det( 11 ,
2
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=−

bbbbq
δδω αβ

αβM . (2.213) 

If there are K atoms per unit cell, the determinant condition yields 3K values of ω2 
for each q. These correspond to the 3K branches of the dispersion relation. There 
will always be three branches for which ω = 0 if q = 0. These branches are called 
the acoustic modes. Higher branches, if present, are called the optic modes. 

Suppose we let the solutions of the determinantal condition be defined by 
ωp

2(q), where p = 1 to 3K. Then we can define the polarization vectors by 

 ∑= β
βαβαω , ,,,,,,

2 1 1)( b bqbbqbqq ppp eMe . (2.214) 

It is seen that these polarization vectors are just the eigenvectors. In evaluating the 
determinantal equation, it will probably save time to make full use of the symme-
try properties of J via M. The physical meaning of complex polarization vectors is 
obtained when they are substituted for xαb and then the resulting real part of xαl,b is 
calculated. 

The central problem in lattice-vibration dynamics is to determine the dispersion 
relation. As we have seen, this is a purely classical calculation. Once the disper-
sion relation is known (and it never is fully known exactly – either from calcula-
tion or experiment), quantum mechanics can be used in the formalism already de-
veloped (see, for example, (2.205) and preceding equations). 

2.3.3  The Debye Theory of Specific Heat (B) 

In this Section an exact expression for the specific heat will be written down. This 
expression will then be approximated by something that can actually be evaluated. 
The method of approximation used is called the Debye approximation. Note that 
in three dimensions (unlike one dimension), the form of the dispersion relation 
and hence the density of states is not exactly known [2.11]. Since the Debye 
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model works so well, for many years after it was formulated nobody tried very 
hard to do better. Actually, it is always a surprise that the approximation does 
work well because the assumptions, on first glance, do not appear to be com-
pletely reasonable. Before Debye’s work, Einstein showed (see Problem 2.24) that 
a simple model in which each mode had the same frequency, led with quantum 
mechanics to a specific heat that vanished at absolute zero. However, the Einstein 
model predicted an exponential temperature decrease at low temperatures rather 
than the correct T 3 dependence. 

The average number of phonons in mode (q, p) is 
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The average energy per mode is 

 ppn ,, qqω= , 

so that the thermodynamic average energy is (neglecting a constant zero-point 
correction, cf. (2.77)) 
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The specific heat at constant volume is then given by 
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Incidentally, when we say we are differentiating at constant volume it may not be 
in the least evident where there could be any volume dependence. However, the 
ωq,p may well depend on the volume. Since we are interested only in a crystal with 
a fixed volume, this effect is not relevant. The student may object that this is not 
realistic as there is a thermal expansion of the solids. It would not be consistent to 
include anything about thermal expansion here. Thermal expansion is due to the 
anharmonic terms in the potential and we are consistently neglecting these. Fur-
thermore, the Debye theory works fairly well in its present form without refine-
ments. 

The Debye model is a model based on the exact expression (2.217) in which 
the sum is evaluated by replacing it by an integral in which there is a density of 
states. Let the total density of states D(ω) be represented by 

 ∑= p pDD )()( ωω , (2.218) 

where Dp(ω) is the number of modes of type p per unit frequency at frequency ω. 
The Debye approximation consists in assuming that the lattice vibrates as if it were 
an elastic continuum. This should work at low temperatures because at low tem-
peratures only long-wavelength (low q) acoustic modes should be important. At 
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high temperatures the cutoff procedure that we will introduce for D(ω) will assure 
that we get the results of the classical equipartition theorem whether or not we use 
the elastic continuum model. We choose the cutoff frequency so that we have only 
3NK (where N is the number of unit cells and K is the number of atoms per unit 
cell) distinct continuum frequencies corresponding to the 3NK normal modes. The 
details of choosing this cutoff frequency will be discussed in more detail shortly. 

In a box with length Lx, width Ly, and height Lz, classical elastic isotropic con-
tinuum waves have frequencies given by 
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where c is the velocity of the wave (it may differ for different types of waves), and 
(kj, lj and mj) are positive integers. 

We can use the dispersion relation given by (2.219) to derive the density of 
states Dp(ω).18 For this purpose, it is convenient to define an ω space with base 
vectors 
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Note that 
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Since the (ki, li, mi) are positive integers, for each state ωj, there is an associated 
cell in ω space with volume 

 
zyx LLL

c 3

321
)()ˆˆ(ˆ π=×⋅ eee . (2.222) 

The volume of the crystals is V = LxLyLz, so that the number of states per unit vol-
ume of ω space is V/(πc)3. If n is the number of states in a sphere of radius ω in ω 
space, then 
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The factor 1/8 enters because only positive kj, lj, and mj are allowed. Simplifying, 
we obtain 
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ωπ= . (2.223) 

                                                           
18 We will later introduce more general ways of deducing the density of states from the dis-

persion relation, see (2.258). 
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The density of states for mode p (which is the number of modes of type p per unit 
frequency) is 

 
)2(d
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In (2.224), cp means the velocity of the wave in mode p. 
Debye assumed (consistent with the isotropic continuum limit) that there were 

two transverse modes and one longitudinal mode. Thus for the total density of 
states, we have D(ω) = (ω2V/2π2) (1/cl

3 + 2/ct
3), where cl and ct are the velocities 

of the longitudinal and transverse modes. However, the total number of modes 
must be 3NK. Thus, we have 

 ∫= D DNK ω ωω0 d)(3 . 

Note that when K = 2 = the number of atoms per unit cell, the assumptions we 
have made push the optic modes into the high-frequency part of the density of 
states. We thus have 
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We have assumed only one cutoff frequency ωD. This was not necessary. We 
could just as well have defined a set of cutoff frequencies by the set of equations 
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There are yet further alternatives. But we are already dealing with a phenomenol-
ogical treatment. Such modifications may improve the agreement of our results 
with experiment, but they hardly increase our understanding from a fundamental 
point of view. Thus for simplicity let us also assume that cp = c = constant. We 
can regard c as some sort of average of the cp. 

Equation (2.225) then gives us 
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The Debye temperature θD is defined as 
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Combining previous results, we have for the specific heat 
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which gives for the specific heat per unit volume (after a little manipulation) 
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D
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where D(θD/T) is the Debye function defined by 
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In Problem 2.13, you are asked to show that (2.230) predicts a T 3 dependence for 
Cv at low temperature and the classical limit of 3k(NK) at high temperature. 
Table 2.3 gives some typical Debye temperatures. For metals θD in K for Al is 
about 394, Fe about 420, and Pb about 88. See, e.g., Parker [24, p 104]. 

Table 2.3. Approximate Debye temperature for alkali 
halides at 0 K 

Alkali halide Debye temperature (K) 

LiF 734 
NaCl 321 
KBr 173 
RbI 103 

Adapted with permission from Lewis JT et al. Phys 
Rev 161, 877, 1967. Copyright 1967 by the American 
Physical Society. 

In discussing specific heats there is, as mentioned, one big difference between 
the one-dimensional case and the three-dimensional case. In the one-dimensional 
case, the dispersion relation is known exactly (for nearest-neighbor interactions) 
and from it the density of states can be exactly computed. In the three-dimensional 
case, the dispersion relation is not known, and so the dispersion relation of a clas-
sical isotropic elastic continuum is often used instead. From this dispersion rela-
tion, a density of states is derived. As already mentioned, in recent years it has 
been possible to determine the dispersion relation directly by the technique of neu-
tron diffraction (which will be discussed in a later chapter). Somewhat less accu-
rate methods are also available. From the dispersion relation we can (rather labo-
riously) get a fairly accurate density of states curve. Generally speaking, this 
density of states curve does not compare very well with the density of states used 
in the Debye approximation. The reason the error is not serious is that the specific 
heat uses only an integral over the density of states. 

In Fig. 2.9 and Fig. 2.10 we have some results of dispersion curves and density 
of states curves that have been obtained from neutron work. Note that only in the 
crudest sense can we say that Debye theory fits a dispersion curve as represented 
by Fig. 2.10. The vibrational frequency spectrum can also be studied by other 
methods such as for example by X-ray scattering. See Maradudin et al [2.26, 
Chap. VII] and Table 2.4. 
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Table 2.4. Experimental methods of studying phonon spectra 

Method Reference 

Inelastic scattering of neutrons by phonons. 
See the end of Sect. 4.3.1 

Brockhouse and Stewart [2.6]. 
Shull and Wollan [2.31] 

Inelastic scattering of X-rays by phonons (in 
which the diffuse background away from 
Bragg peaks is measured). Synchrotron radia-
tion with high photon flux has greatly facili-
tated this technique. 

Dorner et al [2.13] 

Raman scattering (off optic modes) and Bril-
louin scattering (off acoustic modes). See 
Sect. 10.11. 

Vogelgesang et al [2.36]. 

 
Fig. 2.9. Measured dispersion curves. The dispersion curves are for Li7F at 298 °K. The re-
sults are presented along three directions of high symmetry. Note the existence of both op-
tic and acoustic modes. The solid lines are a best least-squares fit for a seven-parameter 
model. [Reprinted with permission from Dolling G, Smith HG, Nicklow RM, Vijayaragha-
van PR, and Wilkinson MK, Physical Review, 168(3), 970 (1968). Copyright 1968 by the 
American Physical Society.] For a complete definition of all terms, reference can be made 
to the original paper 

The Debye theory is often phenomenologically improved by letting θD = θD(T) 
in (2.229). Again this seems to be a curve-fitting procedure, rather than a proce-
dure that leads to better understanding of the fundamentals. It is, however, a good 
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way of measuring the consistency of the Debye approximation. That is, the more 
θD varies with temperature, the less accurate the Debye density of states is in rep-
resenting the true density of states. 

We should mention that from a purely theoretical point we know that the De-
bye model must, in general, be wrong. This is because of the existence of Van 
Hove singularities [2.35]. A general expression for the density of states involves 
one over the k space gradient of the frequency (see (3.258)). Thus, Van Hove has 
shown that the translational symmetry of a lattice causes critical points [values of 
k for which ∇kωp(k) = 0] and that these critical points (which are maxima, min-
ima, or saddle points) in general cause singularities (e.g. a discontinuity of slope) 
in the density of states. See Fig. 2.10. It is interesting to note that the approximate 
Debye theory has no singularities except that due to the cutoff procedure. 

The experimental curve for the specific heat of insulators looks very much like 
Fig. 2.11. The Debye expression fits this type of curve fairly well at all temperatures. 
Kohn has shown that there is another cause of singularities in the phonon spectrum 
that can occur in metals. These occur when the phonon wave vector is twice the 
Fermi wave vector. Related comments are made in Sects. 5.3, 6.6, and 9.5.3. 

In this chapter we have set up a large mathematical apparatus for defining pho-
nons and trying to understand what a phonon is. The only thing we have calcu-
lated that could be compared to experiment is the specific heat. Even the specific 
heat was not exactly evaluated. First, we made the Debye approximation. Second, 

 

Fig. 2.10. Density of states g(ν) for Li7F at 298 °K. [Reprinted with permission from Doll-
ing G, Smith HG, Nicklow RM, Vijayaraghavan PR, and Wilkinson MK, Physical Review, 
168(3), 970 (1968). Copyright 1968 by the American Physical Society.] 
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if we had included anharmonic terms, we would have found a small term linear in 
T at high T. For the experimentally minded student, this is not very satisfactory. 
He would want to see calculations and comparisons to experiment for a wide vari-
ety of cases. However, our plan is to defer such considerations. Phonons are one 
of the two most important basic energy excitations in a solid (electrons being the 
other) and it is important to understand, at first, just what they are. 

We have reserved another chapter for the discussion of the interactions of pho-
nons with other phonons, with other basic energy excitations of the solid, and with 
external probes such as light. This subject of interactions contains the real meat of 
solid-state physics. One topic in this area is introduced in the next section. 
Table 2.5 summarizes simple results for density of states and specific heat in one, 
two, and three dimensions. 

Table 2.5. Dimensionality and frequency (ω) dependence of long-wavelength acoustic 
phonon density of states D(ω), and low-temperature specific heat Cv of lattice vibrations 

 D(ω) Cv 

One dimension A1 B1T 
Two dimensions A2 ω B2 T2 
Three dimensions A3 ω2 B3 T3 

Note that the Ai and Bi are constants. 

 cv 

θD 
T

 
Fig. 2.11. Sketch of specific heat of insulators. The curve is practically flat when the tem-
perature is well above the Debye temperature 
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2.3.4  Anharmonic Terms in The Potential / The Gruneisen Parameter 
(A)19 

We wish to address the topic of thermal expansion, which would not exist without 
anharmonic terms in the potential (for then the average position of the atoms 
would be independent of their amplitude of vibration). Other effects of the anhar-
monic terms are the existence of finite thermal conductivity (which we will dis-
cuss later in Sect. 4.2) and the increase of the specific heat beyond the classical 
Dulong and Petit value at high temperature. Here we wish to obtain an approxi-
mate expression for the coefficient of thermal expansion (which would vanish if 
there were no anharmonic terms). 

We first derive an expression for the free energy of the lattice due to thermal 
vibrations. The free energy is given by 

 ZTkF BL ln−= , (2.231) 

where Z is the partition function. The partition function is given by 
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in the harmonic approximation and ωj(k) labels the frequency of the different 
modes at wave vector k. Each nk can vary from 0 to ∞. The partition function can 
be rewritten as 
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19 [2.10, 1973, Chap. 8] 
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Equation (2.234) could have been obtained by rewriting and generalizing (2.74). 
We must add to this the free energy at absolute zero due to the increase in elastic 
energy if the crystal changes its volume by ΔV. We call this term U0.20 
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We calculate the volume coefficient of thermal expansion α 
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The isothermal compressibility is defined as 
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The anharmonic terms come into play by assuming the ωj(k) depend on volume. 
Since the average number of phonons in the mode k, j is 
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20 U0 is included for completeness, but we end up only using a vanishing temperature de-

rivative so it could be left out. 
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We define the Gruneisen parameter for the mode k, j as 
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However, the lattice internal energy is (in the harmonic approximation) 
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which defines a specific heat for each mode. Since the first term of P in (2.243) is 
independent of T at constant V, and using 
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Thus 

 ∑= j vj j
c, )()(k kkγκα . (2.248) 

Let us define the overall Gruneisen parameter γT as the average Gruneisen pa-
rameter for mode k, j weighted by the specific heat for that mode. Then by (2.242) 
and (2.246) we have 

 ∑= j vjTv j
cc , )()(k kkγγ . (2.249) 
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We then find 

 vT cκγα = . (2.250) 

If γT (the Gruneisen parameter) were actually a constant α would tend to follow 
the changes of cV, which happens for some materials. 

From thermodynamics 
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so cp = cv(1 + γαT) and γ is often between 1 and 2. 

Table 2.6. Gruneisen constants 

Temperature LiF NaCl KBr KI 

0 K 1.7 ± 0.05 0.9 ± 0.03 0.29 ± 0.03 0.28 ± 0.02 
283 K 1.58 1.57 1.49 1.47 

Adaptation of Table 3 from White GK, Proc Roy Soc London A286, 204, 1965. By 
permission of The Royal Society. 

2.3.5  Wave Propagation in an Elastic Crystalline Continuum21 (MET, 
MS) 

In the limit of long waves, classical mechanics can be used for the discussion of 
elastic waves in a crystal. The relevant wave equations can be derived from New-
ton’s second law and a form of Hooke’s law. The appropriate generalized form of 
Hooke’s law says the stress and strain are linearly related. Thus we start by defin-
ing the stress and strain tensors. 

The Stress Tensor (σij) (MET, MS) 

We define the stress tensor σij in such a way that 

 
zy

Fy
yx ΔΔ

Δ
=σ  (2.252) 

for an infinitesimal cube. See Fig. 2.12. Thus i labels the force (positive for ten-
sion) per unit area in the i direction and j indicates which face the force acts on 
(the face is normal to the j direction). The stress tensor is symmetric in the ab-
sence of body torques, and it transforms as the products of vectors so it truly is 
a tensor. 

                                                           
21 See, e.g., Ghatak and Kothari [2.16, Chap. 4] or Brown [2.7, Chap. 5]. 
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By considering Fig. 2.13, we derive a useful expression for the stress that we 
will use later. The normal to dS is n and σindS is the force on dS in the ith direc-
tion. Thus for equilibrium 

 SnSnSnS zizyiyxixin dddd σσσσ ++= , 

so that 

 ∑= j jijin nσσ . (2.253) 

 

x

y

z 

Δx

ΔyΔz

ΔFy

Δy

Δz

 
Fig. 2.12. Schematic definition of stress tensor σij 

 

x

y

z 

σiynydS dS

n (⊥ to plane of dS)

 
Fig. 2.13. Useful pictorial of stress tensor σij 
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The Strain Tensor (εij) (MET, MS) 

Consider infinitesimal and uniform strains and let i, j, k be a set of orthogonal 
axes in the unstrained crystal. Under strain, they will go to a not necessarily or-
thogonal set i′, j′, k′. We define εij so 

 kjii xzxyxx εεε +++=′ )1( , (2.254a) 

 kjij yzyyyx εεε +++=′ )1( , (2.254b) 

 kjik )1( zzzyzx εεε +++=′ . (2.254c) 

Let r represent a point in an unstrained crystal that becomes r′ under uniform in-
finitesimal strain. 

 kjir zyx ++= , (2.255a) 

 kjir ′+′+′=′ zyx . (2.255b) 

Let the displacement of the point be represented by u = r′ – r, so 

 zxyxxxx zyxu εεε ++= , (2.256a) 

 zyyyxyy zyxu εεε ++= , (2.256b) 

 zzyzxzz zyxu εεε ++= . (2.256c) 

We define the strain components in the following way 
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The diagonal components are the normal strain and the off-diagonal components 
are the shear strain. Pure rotations have not been considered, and the strain tensor 
(eij) is symmetric. It is a tensor as it transforms like one. The dilation, or change in 
volume per unit volume is, 

 zzyyxx eee
V
V ++=′×′⋅′== )( kjiδθ . (2.258) 

Due to symmetry there are only 6 independent stress, and 6 independent strain 
components. The six component stresses and strains may be defined by: 

 xxσσ =1 , (2.259a) 

 yyσσ =2 , (2.259b) 

 zzσσ =3 , (2.259c) 

 zyyz σσσ ==4 , (2.259d) 

 zxxz σσσ ==5 , (2.259e) 

 yxxy σσσ ==6 , (2.259f) 

 xxe=1ε , (2.260a) 

 yye=2ε , (2.260b) 

 zze=3ε , (2.260c) 

 zyyz ee 224 ==ε , (2.260d) 

 zxxz ee 225 ==ε , (2.260e) 

 yxxy ee 226 ==ε . (2.260f) 

(The introduction of the 2 in (2.260 d, e, f) is convenient for later purposes). 

Hooke’s Law (MET, MS) 

The generalized Hooke’s law says stress is proportional to strain or in terms of the 
six-component representation: 

 ∑ == 6
1j jiji c εσ , (2.261) 

where the cij are the elastic constants of the crystal. 
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General Equation of Motion (MET, MS) 

It is fairly easy, using Newton’s second law, to derive an expression relating the 
displacements ui and the stresses σij. Reference can be made to Ghatak and 
Kothari [2.16, pp 59-62] for details. If σi

B denotes body force per unit mass in the 
direction i and if ρ is the density of the material, the result is 

 ∑ ∂
∂

+=
∂

∂
j

j

ijB
i

i
xt

u σ
ρσρ

2

2
. (2.262) 

In the absence of external body forces the term σi
B, of course, drops out. 

Strain Energy (MET, MS) 

Equation (2.262) seems rather complicated because there are 36 cij. However, by 
looking at an expression for the strain energy [2.16, p 63-65] and by using (2.261) 
it is possible to show 
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where uV is the potential energy per unit volume. Thus cij is a symmetric matrix 
and of the 36 cij, only 21 are independent. 

Now consider only cubic crystals. Since the x-, y-, z-axes are equivalent, 
 332211 ccc ==  (2.264a) 

and 
 665544 ccc == . (2.264b) 

By considering inversion symmetry, we can show all the other off-diagonal elastic 
constants are zero except for 
 323121231312 cccccc ===== . 

Thus there are only three independent elastic constants,22 which can be repre-
sented as: 
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22 If one can assume central forces Cauchy proved that c12 = c44, however, this is not a good 

approximation in real materials. 
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Equations of Motion for Cubic Crystals (MET, MS) 

From (2.262) (with no external body forces) 
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but 
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 6446 εσσ cxy == , (2.267b) 

 5445 εσσ cxz == . (2.267c) 

Using also (2.257), and combining with the above we get an equation for ∂2ux/∂t2. 
Following a similar procedure we can also get equations for ∂2uy/∂t2 and ∂2uz/∂t2. 
Seeking solutions of the form 
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for j = 1, 2, 3 or x, y, z, we find nontrivial solutions only if 
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Suppose the wave travels along the x direction so ky = kz = 0. We then find the 
three wave velocities: 

 )degenerate(, 44
32

11
1 ρρ

cvvcv === . (2.270) 

vl is a longitudinal wave and v2, v3 are the two transverse waves. Thus, one way of 
determining these elastic constants is by measuring appropriate wave velocities. 
Note that for an isotropic material c11 = c12 + 2c44 so v1 > v2 and v3. The longitudi-
nal sound wave is greater than the transverse sound velocity. 
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Problems 

2.1 Find the normal modes and normal-mode frequencies for a three-atom “lat-
tice” (assume the atoms are of equal mass). Use periodic boundary conditions. 

2.2 Show when m and m′ are restricted to a range consistent with the first Bril-
louin zone that 

 m
mn nmm

NN
′=⎟

⎠
⎞

⎜
⎝
⎛ ′−∑ δπ )(i2exp1 , 

where δm
m′ is the Kronecker delta. 

2.3 Evaluate the specific heat of the linear lattice (given by (2.80)) in the low 
temperature limit. 

2.4 Show that Gmn = Gnm, where G is given by (2.100). 

2.5 This is an essay length problem. It should clarify many points about impurity 
modes. Solve the five-atom lattice problem shown in Fig. 2.14. Use periodic 
boundary conditions. To solve this problem define A = β/α and δ = m/M (α and 
β are the spring constants) and find the normal modes and eigenfrequencies. 
For each eigenfrequency, plot mω2/α versus δ for A = 1 and mω2/α versus A for 
δ = 1. For the first plot: (a) The degeneracy at δ = 1 is split by the presence of 
the impurity. (b) No frequency is changed by more than the distance to the next 
unperturbed frequency. This is a general property. (c) The frequencies that are 
unchanged by changing δ correspond to modes with a node at the impurity (M). 
(d) Identify the mode corresponding to a pure translation of the crystal. (e) 
Identify the impurity mode(s). (f) Note that as we reduce the mass of M, the 
frequency of the impurity mode increases. For the second plot: (a) The degen-
eracy at A = 1 is split by the presence of an impurity. (b) No frequency is 
changed more than the distance to the next unperturbed frequency. (c) Identify 
the pure translation mode. (d) Identify the impurity modes. (e) Note that the 
frequencies of the impurity mode(s) increase with β. 

m m M m

α β β
X1 X2 X3

m 

α
X4 X5  

Fig. 2.14. The five-atom lattice 

2.6 Let aq and aq
†  be the phonon annihilation and creation operators. Show that 

 0],[     and     0],[ ††
11 ==

qqqq
aaaa . 
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2.7 From the phonon annihilation and creation operator commutation relations 
derive that 

 11† ++= qqqq nnna , 

and 

 1−= qqqq nnna . 

2.8 If a1, a2, and a3 are the primitive translation vectors and if Ωa ≡ a1⋅(a2×a3), 
use the method of Jacobians to show that dx dy dz = Ωa dη1 dη2 dη3, where x, 
y, z are the Cartesian coordinates and η1, η2, and η3 are defined by r = η1a1 + 
η2a2 +η3a3. 

2.9 Show that the bi vectors defined by (2.172) satisfy 
 ,     ,     , 213132321 aabaabaab ×=×=×= aaa ΩΩΩ  

where Ωa = a1 ⋅ (a2 × a3). 

2.10 If Ωb = b1 ⋅ (b2 × b3), Ωa = a1 ⋅ (a2 × a3), the bi are defined by (2.172), and the 
ai are the primitive translation vectors, show that Ωb = 1/Ωa. 

2.11 This is a long problem whose results are very important for crystal mathe-
matics. (See (2.178)–(2.184)). Show that 

a)  ∑∑ =
n nl G GqlNNN ,

321
)iexp(1 δR Rq ⋅ , 

where the sum over Rl is a sum over the lattice. 

b)  0,
321

)iexp(1
lq lNNN RRq δ=∑ ⋅ , 

where the sum over q is a sum over one Brillouin zone. 

c) In the limit as Vf.p.p. → ∞ (Vf.p.p. means the volume of the parallelepiped 
representing the actual crystal), one can replace 

 ∫∑ qqq 3
3

f.p.p. d)(
)(2

by          )( f
V

fq π
. 

d)  0,B.Z.
3

3 d)iexp(
)2( lql
a

RRq δ
π

Ω =∫ ⋅ , 

where the integral is over one Brillouin zone. 

e)  ,])(iexp[1
,

3
llll

a
rd ′′ =−∫ δ

Ω
rGG ⋅  

where the integral is over a unit cell. 
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f)  )(d)](iexp[
)2(

1 3
3

rrrrq ′−=′−∫ δ
π

q⋅ , 

where the integral is over all of reciprocal space and δ(r − r′) is the 
Dirac delta function. 

g)  )(d])(iexp[
)2(

1
f.p.p.

3
3

qqrqq ′−=′−∫ ∞→
δ

π V r⋅ . 

In this problem, the ai are the primitive translation vectors. N1a1, N2a2, and 
N3a3 are vectors along the edges of the fundamental parallelepiped. Rl de-
fines lattice points in the direct lattice by (2.171). q are vectors in reciprocal 
space defined by (2.175). The Gl define the lattice points in the reciprocal 
lattice by (2.173). Ωa = a1 ⋅ (a2 × a3), and the r are vectors in direct space. 

2.12 This problem should clarify the discussion of diagonalizing Hq (defined by 
2.198). Find the normal mode eigenvalues and eigenvectors associated with 

 ∑ =−= 3
1j jijii xxm γ�� , 
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A convenient substitution for this purpose is 

 
i

t

ii
m

ux
ωie= . 

2.13 By use of the Debye model, show that 

 Dv TTc θ<<∝ for          3  

and 
 Dv TNKkc θ>>∝ for          )(3 . 

Here, k = the Boltzmann gas constant, N = the number of unit cells in the 
fundamental parallelepiped, and K = the number of atoms per unit cell. Show 
that this result is independent of the Debye model. 

2.14 The nearest-neighbor one-dimensional lattice vibration problem (compare 
Sect. 2.2.2) can be exactly solved. For this lattice: (a) Plot the average num-
ber (per atom) of phonons (with energies between ω and ω + dω) versus ω 
for several temperatures. (b) Plot the internal energy per atom versus tem-
perature. (c) Plot the entropy per atom versus temperature. (d) Plot the spe-
cific heat per atom versus temperature. [Hint: Try to use convenient dimen-
sionless quantities for both ordinates and abscissa in the plots.] 
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 a1

 ↓ 
 ←  a2 →

 
2.15 Find the reciprocal lattice of the two-dimensional square lattice shown 

above. 

2.16 Find the reciprocal lattice of the three-dimensional body-centered cubic lat-
tice. Use for primitive lattice vectors 

 )ˆˆˆ(
2

     ,)ˆˆˆ(
2

     ,)ˆˆˆ(
2 321 zyxazyxazyxa +−=++−=−+= aaa . 

2.17 Find the reciprocal lattice of the three-dimensional face-centered cubic lat-
tice. Use as primitive lattice vectors 

 )ˆˆ(
2

     ,)ˆˆ(
2

     ,)ˆˆ(
2 321 xyazyayxa +=+=+= aaa . 

2.18 Sketch the first Brillouin zone in the reciprocal lattice of the fcc lattice. The 
easiest way to do this is to draw planes that perpendicularly bisect vectors (in 
reciprocal space) from the origin to other reciprocal lattice points. The vol-
ume contained by all planes is the first Brillouin zone. This definition is 
equivalent to the definition just after (2.176). 

2.19 Sketch the first Brillouin zone in the reciprocal lattice of the bcc lattice. 
Problem 2.18 gives a definition of the first Brillouin zone. 

2.20 Find the dispersion relation for the two-dimensional monatomic square lat-
tice in the harmonic approximation. Assume nearest-neighbor interactions. 

2.21 Write an exact expression for the heat capacity (at constant area) of the two-
dimensional square lattice in the nearest-neighbor harmonic approximation. 
Evaluate this expression in an approximation that is analogous to the Debye 
approximation, which is used in three dimensions. Find the exact high- and 
low-temperature limits of the specific heat. 

2.22  Use (2.200) and (2.203), the fact that the polarization vectors satisfy 

 b
bbqbq

′
′ =∑ δδ β

α
βα

p pp ee*  

(the α and β refer to Cartesian components), and 

 11
,

†11
,

11
,

†11
, , pppp PPXX qqqq == −− . 
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(you should convince yourself that these last two relations are valid) to es-
tablish that 

 )(
2

i ,
†
,

*
,,

,

1
, pppp

p
p aa

m qqbq
qb

q eX −−−= ∑ ω
= . 

2.23 Show that the specific heat of a lattice at low temperatures goes as the tem-
perature to the power of the dimension of the lattice as in Table 2.5. 

2.24 Discuss the Einstein theory of specific heat of a crystal in which only one 
lattice vibrational frequency is considered. Show that this leads to a vanish-
ing of the specific heat at absolute zero, but not as T cubed. 

2.25 In (2.270) show vl is longitudinal and v2, v3 are transverse. 

2.26 Derive wave velocities and physically describe the waves that propagate 
along the [110] directions in a cubic crystal. Use (2.269). 

 



 

 

3  Electrons in Periodic Potentials 

As we have said, the universe of traditional solid-state physics is defined by the 
crystalline lattice. The principal actors are the elementary excitations in this 
lattice. In the previous chapter we discussed one of these, the phonons that are the 
quanta of lattice vibration. Another is the electron that is perhaps the principal 
actor in all of solid-state physics. By an electron in a solid we will mean 
something a little different from a free electron. We will mean a dressed electron 
or an electron plus certain of its interactions. Thus we will find that it is often 
convenient to assign an electron in a solid an effective mass. 

There is more to discuss on lattice vibrations than was covered in Chap. 2. In 
particular, we need to analyze anharmonic terms in the potential and see how 
these terms cause phonon–phonon interactions. This will be done in the next 
chapter. Electron–phonon interactions are also included in Chap. 4 and before we 
get there we obviously need to discuss electrons in solids. After making the Born–
Oppenheimer approximation (Chap. 2), we still have to deal with a many-electron 
problem (as well as the behavior of the lattice). A way to reduce the many-
electron problem approximately to an equivalent one-electron problem1 is given 
by the Hartree and Hartree–Fock methods. The density functional method, which 
allows at least in principle, the exact evaluation of some ground-state properties is 
also important. In a certain sense, it can be regarded as an extension of the 
Hartree–Fock method and it has been much used in recent years. 

After justifying the one-electron approximation by discussing the Hartree, 
Hartree–Fock, and density functional methods, we consider several applications of 
the elementary quasifree-electron approximation. 

We then present the nearly free and tight binding approximations for electrons 
in a crystalline lattice. After that we discuss various band structure 
approximations. Finally we discuss some electronic properties of lattice defects. 
We begin with the variational principle, which is used in several of our 
developments. 

                                                           
1 A much more sophisticated approach than we wish to use is contained in Negele and 

Orland [3.36]. In general, with the hope that this book may be useful to all who are 
entering solid-state physics, we have stayed away from most abstract methods of 
quantum field theory. 
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3.1  Reduction to One-Electron Problem 

3.1.1  The Variational Principle (B) 

The variational principle that will be derived in this Section is often called the 
Rayleigh–Ritz variational principle. The principle in itself is extremely simple. 
For this reason, we might be surprised to learn that it is of great practical 
importance. It gives us a way of constructing energies that have a value greater 
than or equal to the ground-state energy of the system. In other words, it gives us 
a way of constructing upper bounds for the energy. There are also techniques for 
constructing lower bounds for the energy, but these techniques are more 
complicated and perhaps not so useful.2 The variational technique derived in this 
Section will be used to derive both the Hartree and Hartree–Fock equations. A 
variational procedure will also be used with the density functional method to 
develop the Kohn–Sham equations. 

Let H be a positive definite Hermitian operator with eigenvalues Eμ and 
eigenkets |μ〉. Since H is positive definite and Hermitian it has a lowest Eμ and the 
Eμ are real. Let the Eμ be labeled so that E0 is the lowest. Let |ψ〉 be an arbitrary ket 
(not necessarily normalized) in the space of interest and define a quantity Q(ψ) 
such that 

 
ψψ

ψψ
ψ

H
=)(Q . (3.1) 

The eigenkets |μ〉 are assumed to form a complete set so that 

 ∑= μ μ μψ a . (3.2) 

Since H is Hermitian, we can assume that the |μ〉 are orthonormal, and we find 

 ∑∑ == ∗
μ μμμ μμ μμψψ 2

,
1 ||1 1 aaa , (3.3) 

and 

 ∑∑ == ∗
μ μμμμ μμ μμψψ Eaaa 2

,
1 ||1 1 HH . (3.4) 

Q can then be written as 

 
∑

∑

∑

∑

∑

∑ −
+==

μ μ

μ μμ

μ μ

μ μ

μ μ

μ μμψ 2

2
0

2

2
0

2

2

||

||)(

||

||

||

||
)(

a

aEE

a

aE

a

aE
Q , 

                                                           
2 See, for example, Friedman [3.18]. 
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or 

 
∑

∑ −
+=

μ μ

μ μμψ 2

2
0

0
||

||)(
)(

a

aEE
EQ . (3.5) 

Since Eμ > E0 and |aμ|2 ≥ 0, we can immediately conclude from (3.5) that 

 0)( EQ ≥ψ . (3.6) 

Summarizing, we have 

 0E≥
ψψ

ψψ H
. (3.7) 

Equation (3.7) is the basic equation of the variational principle. Suppose ψ is a 
trial wave function with a variable parameter η. Then the η that are the best if 
Q(ψ) is to be as close to the lowest eigenvalue as possible (or as close to the 
ground-state energy if H is the Hamiltonian) are among the η for which 

 0=
∂
∂

η
Q . (3.8) 

For the η = ηb that solves (3.8) and minimizes Q(ψ), Q(ψ(ηb)) is an approximation 
to E0. By using successively more sophisticated trial wave functions with more 
and more variable parameters (this is where the hard work comes in), we can get 
as close to E0 as desired. Q(ψ) = E0 exactly only if ψ is an exact wave function 
corresponding to E0. 

3.1.2  The Hartree Approximation (B) 

When applied to electrons, the Hartree method neglects the effects of 
antisymmetry of many electron wave functions. It also neglects correlations (this 
term will be defined precisely later). Despite these deficiencies, the Hartree 
approximation can be very useful, e.g. when applied to many-electron atoms. The 
fact that we have a shell structure in atoms appears to make the deficiencies of the 
Hartree approximation not very serious (strictly speaking even here we have to 
use some of the ideas of the Pauli principle in order that all electrons are not in the 
same lowest-energy shell). The Hartree approximation is also useful for gaining 
a crude understanding of why the quasifree-electron picture of metals has some 
validity. Finally, it is easier to understand the Hartree–Fock method as well as the 
density functional method by slowly building up the requisite ideas. The Hartree 
approximation is a first step. 
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For a solid, the many-electron Hamiltonian whose Schrödinger wave equation 
must be solved is 
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 (3.9) 

This equals H0 of (2.10). 
The first term in the Hamiltonian is the operator representing the kinetic energy 

of all the electrons. Each different i corresponds to a different electron The second 
term is the potential energy of interaction of all of the electrons with all of the 
nuclei, and rai is the distance from the ath nucleus to the ith electron. This 
potential energy of interaction is due to the Coulomb forces. Za is the atomic 
number of the nucleus at a. The third term is the Coulomb potential energy of 
interaction between the nuclei. Rab is the distance between nucleus a and nucleus 
b. The prime on the sum as usual means omission of those terms for which a = b. 
The fourth term is the Coulomb potential energy of interaction between the 
electrons, and rij is the distance between the ith and jth electrons. For electronic 
calculations, the internuclear distances are treated as constant parameters, and so 
the third term can be omitted. This is in accord with the Born–Oppenheimer 
approximation as discussed at the beginning of Chap. 2. Magnetic interactions are 
relativistic corrections to the electrical interactions, and so are often small. They 
are omitted in (3.9). 

For the purpose of deriving the Hartree approximation, this N-electron 
Hamiltonian is unnecessarily cumbersome. It is more convenient to write it in the 
more abstract form 

 ∑∑ ′
= +=   

,2
1

11 )()()( ji
N
in ijVixx HH " , (3.10a) 

where 

 )()( jiVijV = . (3.10b) 

In (3.10a), H(i) is a one-particle operator (e.g. the kinetic energy), V(ij) is a two-
particle operator (e.g. the fourth term in (3.9)), and i refers to the electron with 
coordinate xi (or ri if you prefer). Spin does not need to be discussed for a while, 
but again we can regard xi in a wave function as including the spin of electron i if 
we so desire. 

Eigenfunctions of the many-electron Hamiltonian defined by (3.10a) will be 
sought by use of the variational principle. If there were no interaction between 
electrons and if the indistinguishability of electrons is forgotten, then the 
eigenfunction can be a product of N functions, each function being a function of 
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the coordinates of only one electron. So even though we have interactions, let us 
try a trial wave function that is a simple product of one-electron wave functions: 

 )()()()( 22111 nnn xuxuxuxx "" =ψ . (3.11) 

The u will be assumed to be normalized, but not necessarily orthogonal. Since 
the u are normalized, it is easy to show that the ψ are normalized: 
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Combining (3.10) and (3.11), we can easily calculate 
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 (3.12) 

where the last equation comes from making changes of dummy integration 
variables. 

By (3.7) we need to find an extremum (hopefully a minimum) for 〈ψ|H|ψ〉 
while at the same time taking into account the constraint of normalization. The 
convenient way to do this is by the use of Lagrange multipliers [2]. The 
variational principle then tells us that the best choice of u is determined from 

 0]d)()([ =−∑ ∫ ∗
i iiiiii xuxu τλψψδ H . (3.13) 

In (3.13), δ is an arbitrary variation of the u. ui and uj can be treated independently 
(since Lagrange multipliers λi are being used) as can ui and uj

*. Thus it is 
convenient to choose δ = δk, where δkuk

* and δkuk are independent and arbitrary, 
δkui (≠k) = 0, and δkui

*
(≠k) = 0. 

By (3.10b), (3.12), (3.13), δ = δk, and a little manipulation we easily find 
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1k)( 2211
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∗∗

CCxu
xuxuVxuxuxu

kk

kj jjkkk
τλ
τδ H (3.14) 

In (3.14), C.C. means the complex conjugate of the terms that have already been 
written on the left-hand side of (3.14). The second term is easily seen to be the 
complex conjugate of the first term because 

 ∗+=+= ψδψψδψδψψψδψψψδ HHHHH , 

since H is Hermitian. 
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In (3.14), two terms have been combined by making changes of dummy 
summation and integration variables, and by using the fact that V(1,2) = V(2,1). In 
(3.14), δkuk

*(x1) and δkuk(x1) are independent and arbitrary, so that the integrands 
involved in the coefficients of either δkuk or δkuk

* must be zero. The latter fact 
gives the Hartree equations 

        )()(]d)()2,1()([)()( 11k)( 22211 xuxuxuVxuxux kkkj jjk λτ =+ ∑ ∫≠
∗H . (3.15) 

Because we will have to do the same sort of manipulation when we derive the 
Hartree–Fock equations, we will add a few comments on the derivation of (3.15). 
Allowing for the possibility that the λk may be complex, the most general form of 
(3.14) is 
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where F(1) is defined by (3.14). Since δkuk(x1) and δkuk(x1)* are independent 
(which we will argue in a moment), we have 

 )1()1()1(   and   )1()1()1( kkkkkk uuFuuF ∗== λλ . 

F is Hermitian so that these equations are consistent because then λk = λk
* and is 

real. The independence of δkuk and δkuk
* is easily seen by the fact that if δkuk = 

α + iβ then α and β are real and independent. Therefore if 

 21212121   and    then   ,0i)()( CCCCCCCC −===−++ βα , 

or Cl = C2 = 0 because this is what we mean by independence. But this implies 
Cl(α + iβ) + C2(α − iβ) = 0 implies Cl = C2 = 0 so α + iβ = δkuk and α − iβ = δkuk

* 
are independent. 

Several comments can be made about these equations. The Hartree 
approximation takes us from one Schrödinger equation for N electrons to N 
Schrödinger equations each for one electron. The way to solve the Hartree 
equations is to guess a set of ui and then use (3.15) to calculate a new set. This 
process is to be continued until the u we calculate are similar to the u we guess. 
When this stage is reached, we say we have a consistent set of equations. In the 
Hartree approximation, the state ui is not determined by the instantaneous 
positions of the electrons in state j, but only by their average positions. That is, the 
sum −e ∑ j(≠k)uj

*(x2)uj(x2) serves as a time-independent density ρ(2) of electrons for 
calculating uk(x1). If V(1,2) is the Coulomb repulsion between electrons, the 
second term on the left-hand side corresponds to 

 ∫− 2
120

d
4

1)2( τ
πε

ρ
r

. 

Thus this term has a classical and intuitive meaning. The ui, obtained by solving the 
Hartree equations in a self-consistent manner, are the best set of one-electron orbitals 
in the sense that for these orbitals Q(ψ) = 〈ψ|H|ψ〉/〈ψ|ψ〉 (with ψ = ul,…,uN) is 
a minimum. The physical interpretation of the Lagrange multipliers λk has not yet 



3.1 Reduction to One-Electron Problem      119 

 

been given. Their values are determined by the eigenvalue condition as expressed by 
(3.15). From the form of the Hartree equations we might expect that the λk correspond 
to “the energy of an electron in state k.” This will be further discussed and made 
precise within the more general context of the Hartree–Fock approximation. 

3.1.3  The Hartree–Fock Approximation (A) 

The derivation of the Hartree–Fock equations is similar to the derivation of the 
Hartree equations. The difference in the two methods lies in the form of the trial 
wave function that is used. In the Hartree–Fock approximation the fact that electrons 
are fermions and must have antisymmetric wave functions is explicitly taken into 
account. If we introduce a “spin coordinate” for each electron, and let this spin 
coordinate take on two possible values (say ± ½), then the general way we put into 
the Pauli principle is to require that the many-particle wave function be 
antisymmetric in the interchange of all the coordinates of any two electrons. If we 
form the antisymmetric many-particle wave functions out of one-particle wave 
functions, then we are led to the idea of the Slater determinant for the trial wave 
function. Applying the ideas of the variational principle, we are then led to the 
Hartree–Fock equations. The details of this program are given below. First, we shall 
derive the Hartree–Fock equations using the same notation as was used for the 
Hartree equations. We will then repeat the derivation using the more convenient 
second quantization notation. The second quantization notation often shortens the 
algebra of such derivations. Since much of the current literature is presented in the 
second quantization notation, some familiarity with this method is necessary. 

Derivation of Hartree–Fock Equations in Old Notation (A)3 

Given N one-particle wave functions ui(xi), where xi in the wave functions 
represents all the coordinates (space and spin) of particle i, there is only one 
antisymmetric combination that can be formed (this is a theorem that we will not 
prove). This antisymmetric combination is a determinant. Thus the trial wave 
function that will be used takes the form 
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In (3.16), M is a normalizing factor to be chosen so that ∫|ψ|2dτ = 1. 

                                                           
3 Actually, for the most part we assume restricted Hartree–Fock Equations where there are 

an even number of electrons divided into sets of 2 with the same spatial wave functions 
paired with either a spin-up or spin-down function. In unrestricted Hartree–Fock we do 
not make these assumptions. See, e.g., Marder [3.34, p. 209]. 
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It is easy to see why the use of a determinant automatically takes into account 
the Pauli principle. If two electrons are in the same state, then for some i and j, 
ui = uj. But then two columns of the determinant would be equal and hence ψ = 0, 
or in other words ui = uj is physically impossible. For the same reason, two 
electrons with the same spin cannot occupy the same point in space. The 
antisymmetry property is also easy to see. If we interchange xi and xj, then two 
rows of the determinant are interchanged so that ψ changes sign. All physical 
properties of the system in state ψ depend only quadratically on ψ, so the physical 
properties are unaffected by the change of sign caused by the interchange of the 
two electrons. This is an example of the indistinguishability of electrons. Rather 
than using (3.16) directly, it is more convenient to write the determinant in terms 
of its definition that uses permutation operators: 

 ∑ −= p NN
p

n xuxPuMxx )()()()( 111 ""ψ . (3.17) 

In (3.17), P is the permutation operator and it acts either on the subscripts of u (in 
pairs) or on the coordinates xi (in pairs). (−)P is ±1, depending on whether P is an 
even or an odd permutation. A permutation of a set is even (odd), if it takes an 
even (odd) number of interchanges of pairs of the set to get the set from its 
original order to its permuted order. 

In (3.17) it will be assumed that the single-particle wave functions are 
orthonormal: 

 ∫ =∗ j
iji xxuxu δ111 d)()( . (3.18) 

In (3.18) the symbol ∫ means to integrate over the spatial coordinates and to sum 
over the spin coordinates. For the purposes of this calculation, however, the 
symbol can be regarded as an ordinary integral (most of the time) and things will 
come out satisfactorily. 

From Problem 3.2, the correct normalizing factor for the ψ is (N!)−1/2, and so 
the normalized ψ have the form 

 ∑ −= p NN
p

n xuxPuNxx )()()()!/1()( 111 ""ψ . (3.19) 

Functions of the form (3.19) are called Slater determinants. 
The next obvious step is to apply the variational principle. Using Lagrange 

multipliers λij to take into account the orthonormality constraint, we have 

 ( ) 0, , =−∑ ji jiji uuλψψδ H . (3.20) 

Using the same Hamiltonian as was used in the Hartree problem, we have 

 ψψψψψψ ∑∑ ′+=  
,2

1 )()( ji ijViHH . (3.21) 
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The first term can be evaluated as follows: 
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since P commutes with ∑ H(i). Defining Q = P−1P′, we have 
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where Q ≡ P−1P′ is also a permutation, 

 ,d)]()([)()]()([)( 1111∑ ∫ ∑∗∗−= q NNNN
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where P is regarded as acting on the coordinates, and by dummy changes of 
integration variables, the N! integrals are identical, 
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where ql…qN is the permutation of 1…N generated by Q, 
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where use has been made of the orthonormality of the ui, 

 ∑ ∫ ∗= i i xuxu 1111 d)()1()( τH , (3.22) 

where the delta functions allow only Q = I (the identity) and a dummy change of 
integration variables has been made. 

The derivation of an expression for the matrix element of the two-particle 
operator is somewhat longer: 
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since P commutes with ∑′i,jV(i,j), 

 [ ]∑ ∫ ∑ ′∗∗−= qp NNjiNN
q xuxQujiVxuxuP

N , 11
 
,11 d)()(),()()()(

!2
1 τ"" , 

where Q ≡ P−1P′ is also a permutation, 

 ∑ ∫ ∑ ′∗∗−= q NqqjiNN
q xuxujiVxuxu

N N τd)]()([),()]()([)(
!2

1
1

 
,11 1 "" , 

since all N! integrals generated by P can be shown to be identical and q1…qN is 
the permutation of 1…N generated by Q, 
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where use has been made of the orthonormality of the ui, 
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where the delta function allows only qi = i, qj = j or qi = j, qj = i, and these 
permutations differ in the sign of (−1)q and a change in the dummy variables of 
integration has been made. 

Combining (3.20), (3.21), (3.22), (3.23), and choosing δ = δk in the same way 
as was done in the Hartree approximation, we find 
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Since δkuk
* is completely arbitrary, the part of the integrand inside the brackets 

must vanish. There is some arbitrariness in the λ just because the u are not unique 
(there are several sets of us that yield the same determinant). The arbitrariness is 
sufficient that we can choose λk≠j = 0 without loss in generality. Also note that we 
can let the sums run over j = k as the j = k terms cancel one another. The following 
equations are thus obtained: 
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 (3.24) 

where εk ≡ λkk. 



3.1 Reduction to One-Electron Problem      123 

 

Equation (3.24) gives the set of equations known as the Hartree–Fock 
equations. The derivation is not complete until the εk are interpreted. From (3.24) 
we can write 

 
{

}, )2()1()2,1()2()1(                                             

)2()1()2,1()2()1()1()1()1(

kjjk

j jkjkkkk

uuVuu

uuVuuuu

−

+= ∑Hε
 (3.25) 

where 1 and 2 are a notation for x1 and x2. It is convenient at this point to be 
explicit about what we mean by this notation. We must realize that 

 )()()( 111 sxu kkk ξψ r≡ , (3.26) 

where ψk is the spatial part of the wave function, and ξk is the spin part. 
Integrals mean integration over space and summation over spins. The spin 

functions refer to either “+1/2” or “−1/2” spin states, where ±1/2 refers to the 
eigenvalues of sz/= for the spin in question. Two spin functions have inner product 
equal to one when they are both in the same spin state. They have inner product 
equal to zero when one is in a +1/2 spin state and one is in a −1/2 spin state. Let us 
rewrite (3.25) where the summation over the spin part of the inner product has 
already been done. The inner products now refer only to integration over space: 
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In (3.27), j(|| k) means to sum only over states j that have spins that are in the same 
state as those states labeled by k. 

Equation (3.27), of course, does not tell us what the εk are. A theorem due to 
Koopmans gives the desired interpretation. Koopmans’ theorem states that εk is 
the negative of the energy required to remove an electron in state k from the solid. 
The proof is fairly simple. From (3.22) and (3.23) we can write (using the same 
notation as in (3.27)) 
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Denoting E(w.o.k.) as (3.28) in which terms for which i = k, j = k are omitted from 
the sums we have 
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Combining (3.27) and (3.29), we have 

 ])w.o.k.([ EEk −−=ε , (3.30) 
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which is the precise mathematical statement of Koopmans’ theorem. A similar 
theorem holds for the Hartree method. 

Note that the statement that εk is the negative of the energy required to remove 
an electron in state k is valid only in the approximation that the other states are 
unmodified by removal of an electron in state k. For a metal with many electrons, 
this is a good approximation. It is also interesting to note that 
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Derivation of Hartree–Fock Equations in Second Quantization 
Notation (A) 

There really aren’t many new ideas introduced in this section. Its purpose is to 
gain some familiarity with the second quantization notation for fermions. Of 
course, the idea of the variational principle will still have to be used.4 

According to Appendix G, if the Hamiltonian is of the form (3.10), then we can 
write it as 

 ∑∑ += lkji lkijklijji jiij aaaaVaa ,,,
††

,2
1

,
†HH , (3.32) 

where the Hij and the Vij,kl are matrix elements of the one- and two-body operators, 

 ijijjilkjiklij aaaaVV δ=+= ††
,,      and     . (3.33) 

The rest of the anticommutators of the a are zero. 
We shall assume that the occupied states for the normalized ground state Φ 

(which is a Slater determinant) that minimizes 〈Φ|H|Φ〉 are labeled from 1 to N. 
For Φ giving a true extremum, as we saw in the Section on the Hartree 
approximation, we need require only that 

 0=ΦΦδ H . (3.34) 

It is easy to see that if 〈Φ|Φ〉 = 1, then |Φ〉 + |δΦ〉 is still normalized to first 
order in the variation. For example, let us assume that 

 NiNkaas
ik

≤>= 11†    ,for          )( 11 ΦδΦδ , (3.35) 

                                                           
4 For additional comments, see Thouless [3.54]. 
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where δs is a small number and where all one-electron states up to the Nth are 
occupied in the ground state of the electron system. That is, |δΦ〉 differs from |Φ〉 
by having the electron in state Φi

1 go to state Φk
1. Then 
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According to the variational principle, we have as a basic condition 
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Combining (3.32) and (3.37) yields 
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where the summation is over all values of i, j, k, l (both occupied and unoccupied). 
There are two basically different matrix elements to consider. To evaluate them 

we can make use of the anticommutation relations. Let us do the simplest one 
first. Φ has been assumed to be the Slater determinant approximation to the 
ground state, so: 
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In the second term akl operating to the right gives zero (the only possible result of 
annihilating a state that isn’t there). Since aj|Φ〉 is orthogonal to ail|Φ〉 unless i1 = j, 
the first term is just δj

i1. Thus we obtain 
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The second matrix element in (3.38) requires a little more manipulation to 
evaluate 
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Since akl|Φ〉 = 0, the last matrix element is zero. The first two matrix elements are 
both of the same form, so we need evaluate only one of them: 
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i l |Φ〉 is zero since this tries to create a fermion in an already occupied state. So 
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Combining with previous results, we finally find 

 
.δδδδδδ

δδδδδδΦaaaaaaΦ
k
i

Nl
j

i
k

Nk
j

l
i

i
k

k
i

Nl
i

j
k

Nk
i

l
i

j
klkijki

1111

111111
†††

≤≤

≤≤

+−

−=
 (3.40) 

Combining (3.38), (3.39), and (3.40), we have 

 
, 

0

11111111

11

2
1 ∑

∑

⎟
⎠
⎞

⎜
⎝
⎛ −−++

=

N
ijkl

k
j

l
i

i
k

k
i

l
i

j
k

k
i

l
j

i
k

k
i

l
i

j
kij,kl

i,j
i
k

j
ii,j

δδδδδδδδδδδδV

δδH
 

or 

 
.

0

1 ,1 ,1 ,1 ,2
1

11111111

11

⎟
⎠
⎞⎜

⎝
⎛ −−++

=

∑∑∑∑ ====
N
j jijk

N
i iiik

N
j jijk

N
i iiik

ik

VVVV

H
 

By using the symmetry in the V and making dummy changes in summation 
variables this can be written as 

 ∑ = ⎟
⎠
⎞⎜

⎝
⎛ −+= N

j jijkjijkik
VV1 ,, 1111110 H . (3.41) 

Equation (3.41) suggests a definition of a one-particle operator called the self-
consistent one-particle Hamiltonian: 

 ∑ ∑ = −+= ki ik
N
j jikjijkjkiC aaVV †

1 ,, ])([HH . (3.42) 

At first glance we might think that this operator is identically zero by comparing it 
to (3.41). But in (3.41) k1 > N and i1 < N, whereas in (3.42) there is no such 
restriction. 
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An important property of HC is that it has no matrix elements between occupied 
(i1) and normally unoccupied (k1) levels. Letting HC = ∑ki fkiak

†ai, we have 

 

. 0))((0

00

11111

11

††

†††

1†111

∑

∑

∑

−−=

=

=

ki
i
iii

k
kkkki

ki iikkki

ki ikkiC

aaaaf

aaaaf

iaakfik

δδ

H

 

Since ai |0〉 = 0, we have 

 011
11 =+=

ikC fik H  

by the definition of fki and (3.41). 
We have shown that 〈δΦ|H|Φ〉 = 0 (for Φ constructed by Slater determinants) 

if, and only if, (3.41) is satisfied, which is true if, and only if, HC has no matrix 
elements between occupied (i1) and unoccupied (k1) levels. Thus in a matrix 
representation HC is in block diagonal form since all 〈i1|H|k1〉 = 〈k1|H|i1〉 = 0. HC is 
Hermitian, so that it can be diagonalized. Since it is already in block diagonal 
form, each block can be separately diagonalized. This means that the new 
occupied levels are linear combinations of the old occupied levels only and the 
new occupied levels are linear combinations of the old unoccupied levels only. By 
new levels we mean those levels that have wave functions 〈i|, 〈j| such that 〈i|HC|j〉 
vanishes unless i = j. 

Using this new set of levels, we can say 

 ∑= i iiiC aa†εH . (3.43) 

In order that (3.43) and (3.42) are equivalent, we have 

 kii
N
j jikjijkjki VV δε=−+∑ =1 ,, )(H . (3.44) 

These equations are the Hartree–Fock equations. Compare (3.44) and (3.24). That 
is, we have established that 〈δΦ|H|Φ〉 = 0 (for Φ a Slater determinant) implies 
(3.44). It is also true that the set of one-electron wave functions for which (3.44) is 
true minimizes 〈Φ|H|Φ〉, where Φ is restricted to be a Slater determinant of the 
one-electron functions. 

Hermitian Nature of the Exchange Operator (A) 

In this section, the Hartree–Fock “Hamiltonian” will be proved to be Hermitian. If 
the Hartree–Fock Hamiltonian, in addition, has nondegenerate eigenfunctions, then 
we are guaranteed that the eigenfunctions will be orthogonal. Regardless of 
degeneracy, the orthogonality of the eigenfunctions was built into the Hartree–Fock 
equations from the very beginning. More importantly, perhaps, the Hermitian nature 
of the Hartree–Fock Hamiltonian guarantees that its eigenvalues are real. They have 
to be real. Otherwise Koopmans’ theorem would not make sense. 
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The Hartree–Fock Hamiltonian is defined as that operator H F for which 

 kkk uu ε=FH . (3.45) 

H F is then defined by comparing (3.24) and (3.45). Taking care of the spin 
summations as has already been explained, we can write 

 12221
F )()2,1()( AdVj jj ++= ∑ ∫ ∗ τψψ rrHH , (3.46) 

where 

 ∑ ∫ ∗−= ) (|| 122211 )(d)()2,1()()( kj jj VA rrrr kk ψτψψψ , 

and A1 is called the exchange operator. 
For the Hartree–Fock Hamiltonian to be Hermitian we have to prove that 

 ∗= ijji FF HH . (3.47) 

This property is obvious for the first two terms on the right-hand side of (3.46) 
and so needs only to be proved for A1: 
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5 In the proof, use has been made of changes of dummy integration variable and of 
the relation V(1,2) = V(2,1). 

The Fermi Hole (A) 

The exchange term (when the interaction is the Coulomb interaction energy and e 
is the magnitude of the charge on the electron) is 
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5 The matrix elements in (3.47) would vanish if i and j did not refer to spin states which 

were parallel. 
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where 
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From (3.48) and (3.49) we see that exchange can be interpreted as the potential 
energy of interaction of an electron at rl with a charge distribution with charge 
density ρ(rl, r2). This charge distribution is a mathematical rather than a physical 
charge distribution. 

Several comments can be made about the exchange charge density ρ(rl, r2): 
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Thus we can think of the total exchange charge as being of magnitude +e. 

2. ρ(rl, r1) = e∑ j(||i)|ψj(r1)|2, which has the same magnitude and opposite sign of the 
charge density of parallel spin electrons. 

3. From (1) and (2) we can conclude that |ρ| must decrease as r12 increases. This 
will be made quantitative in the section below on Two Free Electrons and 
Exchange. 

4. It is convenient to think of the Fermi hole and exchange charge density in the 
following way: in H F, neglecting for the moment A1, the potential energy of the 
electron is the potential energy due to the ion cores and all the electrons. Thus 
the electron interacts with itself in the sense that it interacts with a charge 
density constructed from its own wave function. The exchange term cancels out 
this unwanted interaction in a sense, but it cancels it out locally. That is, the 
exchange term A1 cancels the potential energy of interaction of electrons with 
parallel spin in the neighborhood of the electron with given spin. Pictorially we 
say that the electron with given spin is surrounded by an exchange charge hole 
(or Fermi hole of charge +e). 

The idea of the Fermi hole still does not include the description of the Coulomb 
correlations between electrons due to their mutual repulsion. In this respect the 
Hartree–Fock method is no better than the Hartree method. In the Hartree method, 
the electrons move in a field that depends only on the average charge distribution 
of all other electrons. In the Hartree–Fock method, the only correlations included 
are those that arise because of the Fermi hole, and these are simply due to the fact 
that the Pauli principle does not allow two electrons with parallel spin to have the 
same spatial coordinates. We could call these kinematic correlations (due to 
constraints) rather than dynamic correlations (due to forces). For further 
comments on Coulomb correlations see Sect. 3.1.4. 
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The Hartree–Fock Method Applied to the Free-Electron Gas (A) 

To make the above concepts clearer, the Hartree–Fock method will be applied to a 
free-electron gas. This discussion may actually have some physical content. This 
is because the Hartree–Fock equations applied to a monovalent metal can be 
written 
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(3.50) 

The VI(r1) are the ion core potential energies. Let us smear out the net positive 
charge of the ion cores to make a uniform positive background charge. We will 
find that the eigenfunctions of (3.50) are plane waves. This means that the 
electronic charge distribution is a uniform smear as well. For this situation it is 
clear that the second and third terms on the left-hand side of (3.50) must cancel. 
This is because the second term represents the negative potential energy of 
interaction between smeared out positive charge and an equal amount of smeared 
out negative electronic charge. The third term equals the positive potential energy 
of interaction between equal amounts of smeared out negative electronic charge. 
We will, therefore, drop the second and third terms in what follows. 

With such a drastic assumption about the ion core potentials, we might also be 
tempted to throw out the exchange term as well. If we do this we are left with just 
a set of one-electron, free-electron equations. That even this crude model has 
some physical validity is shown in several following sections. In this section, the 
exchange term will be retained, and the Hartree–Fock equations for a free-electron 
gas will later be considered as approximately valid for a monovalent metal. 

The equations we are going to solve are 
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Dropping the Coulomb terms is not consistent unless we can show that the 
solutions of (3.51) are of the form of plane waves 

 1i
1 e1)( rk

k r ⋅=
V

ψ , (3.52) 

where V is the volume of the crystal. 
In (3.51) all integrals are over V. Since ћk refers just to linear momentum, it is 

clear that there is no reference to spin in (3.51). When we sum over k′, we sum 
over distinct spatial states. If we assume each spatial state is doubly occupied with 
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one spin 1/2 electron and one spin −1/2 electron, then a sum over k′ sums over all 
electronic states with spin parallel to the electron in k. 

To establish that (3.52) is a solution of (3.51) we have only to substitute. The 
kinetic energy is readily disposed of: 
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The exchange term requires a little more thought. Using (3.52), we obtain 
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The last integral in (3.54) can be evaluated by making an analogy to a similar 
problem in electrostatics. Suppose we have a collection of charges that have 
a charge density ρ(r2) = exp[i(k−k′)⋅r2]. Let φ(rl) be the potential at the point rl due 
to these charges. Let us further suppose that we can treat ρ(r2) as if it is 
a collection of real charges. Then Coulomb’s law would tell us that the potential 
and the charge distribution are related in the following way: 
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However, since we are regarding ρ(r2) as if it were a real distribution of charge, 
we know that φ(rl) must satisfy Poisson’s equation. That is, 
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By substitution, we see that a solution of this equation is 
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Comparing (3.55) with (3.57), we find 

 2
0

)(i

2
120

)(i

||
ed

4
e 12

kk

rkkrkk

′−
=

⋅′−⋅′−

∫
ε

τ
πε r

. (3.58) 



132      3 Electrons in Periodic Potentials 

 

We can therefore write the exchange operator defined in (3.54) as 
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If we define A1(k) as the eigenvalue of the operator defined by (3.59), then we 
find that we have plane-wave solutions of (3.51), provided that the energy 
eigenvalues are given by 
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If we propose that the above be valid for monovalent metals, then we can make 
a comparison with experiment. If we imagine that we have a very large crystal, 
then we can evaluate the sum in (3.59) by replacing it by an integral. We have 
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We assume that the energy of the electrons depends only on |k| and that the 
maximum energy electrons have |k| = kM. If we use spherical polar coordinates (in 
k′-space) with the k′z-axis chosen to be parallel to the k-axis, we can write 
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But ∫x(ln x)dx = (x2/2)ln x − x2/4, so we can evaluate this last integral and finally 
find 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′−
′+−+−=

kk
kk

kk
kkkeA

M

MM ln2
4

)(
22

0
2

2

1 επ
k . (3.63) 



3.1 Reduction to One-Electron Problem      133 

 

The results of Problem 3.5 combined with (3.60) and (3.63) tell us on the Hartree–
Fock free-electron model for the monovalent metals that the lowest energy in the 
conduction band should be given by 
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while the energy of the highest filled electronic state in the conduction band 
should be given by 
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Therefore, the width of the filled part of the conduction band is readily obtained as 
a simple function of kM: 
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To complete the calculation we need only express kM in terms of the number of 
electrons N in the conduction band: 
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The factor of 2 in (3.67) comes from having two spin states per k-state. Equation 
(3.67) determines kM only for absolute zero temperature. However, we only have 
an upper limit on the electron energy at absolute zero anyway. We do not 
introduce much error by using these expressions at finite temperature, however, 
because the preponderance of electrons always has |k| < kM for any reasonable 
temperature. 

The first term on the right-hand side of (3.66) is the Hartree result for the 
bandwidth (for occupied states). If we run out the numbers, we find that the 
Hartree–Fock bandwidth is typically more than twice as large as the Hartree 
bandwidth. If we compare this to experiment for sodium, we find that the Hartree 
result is much closer to the experimental value. The reason for this is that the 
Hartree theory makes two errors (neglect of the Pauli principle and neglect of 
Coulomb correlations), but these errors tend to cancel. In the Hartree–Fock theory, 
Coulomb correlations are left out and there is no other error to cancel this 
omission. In atoms, however, the Hartree–Fock method usually gives better 
energies than the Hartree method. For further discussion of the topics in these last 
two sections as well as in the next section, see the book by Raimes [78]. 

Two Free Electrons and Exchange (A) 

To give further insight into the nature of exchange and to the meaning of the 
Fermi hole, it is useful to consider the two free-electron model. A direct derivation 
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of the charge density of electrons (with the same spin state as a given electron) 
will be made for this model. This charge density will be found as a function of the 
distance from the given electron. If we have two free electrons with the same spin 
in states k and k′, the spatial wave function is 

 
21

21

ii

ii

221,
ee
ee

2

1),( rkrk

rkrk
rr ⋅′⋅′

⋅⋅
′ =

V
kkψ . (3.68) 

By quantum mechanics, the probability P(r1,r2) that rl lies in the volume element 
drl, and r2 lies in the volume element dr2 is 
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The last term in (3.69) is obtained by using (3.68) and a little manipulation. 
If we now assume that there are N electrons (half with spin 1/2 and half with 

spin −1/2), then there are (N/2)(N/2 − 1) ≅ N 2/4 pairs with parallel spins. 
Averaging over all pairs, we have for the average probability of parallel spin 
electron at rl and r2 
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and after considerable manipulation we can recast this into the form 
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If there were no exchange (i.e. if we use a simple product wave function rather 
than a determinantal wave function), then ρ would be 1 everywhere. This means 
that parallel spin electrons would have no tendency to avoid each other. But as 
Fig. 3.1 shows, exchange tends to “correlate” the motion of parallel spin electrons 
in such a way that they tend to not come too close. This is, of course, just an 
example of the Pauli principle applied to a particular situation. This result should 
be compared to the Fermi hole concept introduced in a previous section. These 
oscillations are related to the Rudermann–Kittel oscillations of Sect. 7.2.1 and the 
Friedel oscillations mentioned in Sect. 9.5.3. 

In later sections, the Hartree approximation on a free-electron gas with 
a uniform positive background charge will be used. It is surprising how many 
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experiments can be interpreted with this model. The main use that is made of this 
model is in estimating a density of states of electrons. (We will see how to do this 
in the Section on the specific heat of an electron gas.) Since the final results 
usually depend only on an integral over the density of states, we can begin to see 
why this model does not introduce such serious errors. More comments need to be 
made about the progress in understanding Coulomb correlations. These comments 
are made in the next section. 

 

π/2 
ε = kMr12 

ρ(ε) 

1.0 

 
Fig. 3.1. Sketch of density of electrons within a distance r12 of a parallel spin 
electron 

3.1.4  Coulomb Correlations and the Many-Electron Problem (A) 

We often assume that the Coulomb interactions of electrons (and hence Coulomb 
correlations) can be neglected. The Coulomb force between electrons (especially 
at metallic densities) is not a weak force. However, many phenomena (such as 
Pauli paramagnetism and thermionic emission, which we will discuss later) can be 
fairly well explained by theories that ignore Coulomb correlations. 

This apparent contradiction is explained by admitting that the electrons do 
interact strongly. We believe that the strongly interacting electrons in a metal form 
a (normal) Fermi liquid.6 The elementary energy excitations in the Fermi liquid 
are called Landau7 quasiparticles or quasielectrons. For every electron there is 
a quasielectron. The Landau theory of the Fermi liquid is discussed a little more 
in Sect. 4.1. 

Not all quasielectrons are important. Only those that are near the Fermi level in 
energy are detected in most experiments. This is fortunate because it is only these 
quasielectrons that have fairly long lifetimes. 

                                                           
6 A normal Fermi liquid can be thought to evolve adiabatically from a Fermi liquid in 

which the electrons do not interact and in which there is a 1 to 1 correspondence between 
noninteracting electrons and the quasiparticles. This excludes the formation of “bound” 
states as in superconductivity (Chap. 8). 

7 See Landau [3.31]. 
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We may think of the quasielectrons as being weakly interacting. Thus our 
discussion of the N-electron problem in terms of N one-electron problems is 
approximately valid if we realize we are talking about quasielectrons and not 
electrons. 

Further work on interacting electron systems has been done by Bohm, Pines, 
and others. Their calculations show two types of fundamental energy excitations: 
quasielectrons and plasmons.8 The plasmons are collective energy excitations 
somewhat like a wave in the electron “sea.” Since plasmons require many electron 
volts of energy for their creation, we may often ignore them. This leaves us with 
the quasielectrons that interact by shielded Coulomb forces and so interact 
weakly. Again we see why a free-electron picture of an interacting electron 
system has some validity. 

 

pF

(b)(a) 

pF
p p

Np Np

 
Fig. 3.2. The Fermi distribution at absolute zero (a) with no interactions, and 
(b) with interactions (sketched) 

We should also mention that Kohn, Luttinger, and others have indicated that 
electron–electron interactions may change (slightly) the Fermi–Dirac distribution.8 
Their results indicate that the interactions introduce a tail in the Fermi distribution 
as sketched in Fig. 3.2. Np is the probability per state for an electron to be in 
a state with momentum p. Even with interactions there is a discontinuity in the 
slope of Np at the Fermi momentum. However, we expect for all calculations in 
this book that we can use the Fermi–Dirac distribution without corrections and 
still achieve little error. 

The study of many-electron systems is fundamental to solid-state physics. 
Much research remains to be done in this area. Further related comments are made 
in Sect. 3.2.2 and in Sect. 4.4. 

                                                           
8 See Pines [3.41]. 
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3.1.5  Density Functional Approximation9 (A) 

We have discussed the Hartree–Fock method in detail, but, of course, it has its 
difficulties. For example, a true, self-consistent Hartree–Fock approximation is 
very complex, and the correlations between electrons due to Coulomb repulsions 
are not properly treated. The density functional approximation provides another 
starting point for treating many-body systems, and it provides a better way of 
teaching electron correlations, at least for ground-state properties. One can regard 
the density functional method as a generalization of the much older Thomas–
Fermi method discussed in Sect. 9.5.2. Sometimes density functional theory is 
said to be a part of The Standard Model for periodic solids [3.27]. 

There are really two parts to density functional theory (DFT). The first part, 
upon which the whole theory is based, derives from a basic theorem of P. 
Hohenberg and W. Kohn. This theorem reduces the solution of the many body 
ground state to the solution of a one-particle Schrödinger-like equation for the 
electron density. The electron density contains all needed information. In 
principle, this equation contains the Hartree potential, exchange and correlation. 

In practice, an approximation is needed to make a problem treatable. This is the 
second part. The most common approximation is known as the local density 
approximation (LDA). The approximation involves treating the effective potential 
at a point as depending on the electron density in the same way as it would be for 
jellium (an electron gas neutralized by a uniform background charge). The 
approach can also be regarded as a generalization of the Thomas–Fermi–Dirac 
method. 

The density functional method has met with considerable success for 
calculating the binding energies, lattice parameters, and bulk moduli of metals. It 
has been applied to a variety of other systems, including atoms, molecules, 
semiconductors, insulators, surfaces, and defects. It has also been used for certain 
properties of itinerant electron magnetism. Predicted energy gap energies in 
semiconductors and insulators can be too small, and the DFT has difficulty 
predicting excitation energies. DFT-LDA also has difficulty in predicting the 
ground states of open-shell, 3d, transition element atoms. In 1998, Walter Kohn 
was awarded a Nobel prize in chemistry for his central role in developing the 
density functional method [3.27]. 

Hohenberg–Kohn Theorem (HK Theorem) (A) 

As the previous discussion indicates, the most important difficulty associated with 
the Hartree–Fock approximation is that electrons with opposite spin are left 
uncorrelated. However, it does provide a rational self-consistent calculation that is 
more or less practical, and it does clearly indicate the exchange effect. It is 
a useful starting point for improved calculations. In one sense, density functional 
theory can be regarded as a modern improved and generalized Hartree–Fock 
calculation, at least for ground-state properties. This is discussed below. 
                                                           
9 See Kohn [3.27] and Callaway and March [3.8]. 
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We start by deriving the basic theorem for DFT for N identical spinless 
fermions with a nondegenerate ground state. This theorem is: The ground-state 
energy E0 is a unique functional of the electron density n(r), i.e. E0 = E0[n(r)]. 
Further, E0[n(r)] has a minimum value for n(r) having its correct value. In all 
variables, n is constrained, so N = ∫n(r)dr. 

In deriving this theorem, the concept of an external (local) field with a local 
external potential plays an important role. We will basically show that the external 
potential v(r), and thus, all properties of the many-electron systems will be 
determined by the ground-state electron distribution function n(r). Let φ = 
φ0(r1,r2,…rN) be the normalized wave function for the nondegenerate ground state. 
The electron density can then be calculated from 

 ∫ ∗= nddNn rrr …2001)( ϕϕ , 

where dri = dxidyidzi. Assuming the same potential for each electron υ(r), the 
potential energy of all electrons in the external field is 

 ∑ == N
i iNV 11 )()( rrr υ… . (3.71) 

The proof of the theorem starts by showing that n(r) determines υ(r), (up to an 
additive constant, of course, changing the overall potential by a constant amount 
does not affect the ground state). More technically, we say that υ(r) is a unique 
functional of n(r). We prove this by a reductio ad absurdum argument. 

We suppose υ′ determines the Hamiltonian H′ and hence the ground state φ′0, 
similarly, υ determines H and hence, φ0. We further assume υ′ ≠ υ but the ground-
state wave functions have n′ = n. By the variational principle for nondegenerate 
ground states (the proof can be generalized for degenerate ground states): 
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where dτ = dr1…drN, so 
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by the symmetry of |φ0|2 under exchange of electrons. Thus, using the definitions 
of n(r), we can write 

 ∫ ∫ ⋅−′+<′ ∗
120000 d)dd)1()1()](()([ rrrrr Nii NNNEE ……… ϕϕυυ , 
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or 

 ∫ −′+<′ 111100 d)]()()[( rrrr υυnEE . (3.74) 

Now, n(r) is assumed to be the same for υ and υ′, so interchanging the primed and 
unprimed terms leads to 

 ∫ ′−+′< 111100 d)]()()[( rrrr υυnEE . (3.75) 

Adding the last two results, we find 

 0000 EEEE +′<′+ , (3.76) 

which is, of course, a contradiction. Thus, our original assumption that n and n′ 
are the same must be false. Thus υ(r) is a unique functional (up to an additive 
constant) of n(r). 

Let the Hamiltonian for all the electrons be represented by H. This Hamiltonian 
will include the total kinetic energy T, the total interaction energy U between 
electrons, and the total interaction with the external field V = ∑υ(ri). So, 

 ∑++= )( iUT rυH . (3.77) 

We have shown n(r) determines υ(r), and hence, H, which determines the ground-
state wave function φ0. Therefore, we can define the functional 

 ∫ += ∗ τϕϕ d)()]([ 00 UTnF r . (3.78) 

We can also write 
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by the symmetry of the wave function, 
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by definition of n(r). Thus the total energy functional can be written 

 ∫∫ +== ∗ rrr d)()(][d][ 000 υτϕϕ nnFnE H . (3.81) 

The ground-state energy E0 is a unique functional of the ground-state electron 
density. We now need to show that E0 is a minimum when n(r) assumes the 
correct electron density. Let n be the correct density function, and let us vary 
n → n′, so υ → υ′ and φ → φ′ (the ground-state wave function). All variations are 
subject to N = ∫n(r)dr = ∫n′(r)dr being constant. We have 
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By the principle ∫φ′0Hφ′0dτ > ∫φ0Hφ0dτ, we have 

 ][][ 00 nEnE >′ , (3.83) 

as desired. Thus, the HK Theorem is proved. 
The HK Theorem can be extended to the more realistic case of electrons with 

spin and also to finite temperature. To include spin, one must consider both a spin 
density s(r), as well as a particle density n(r). The HK Theorem then states that 
the ground state is a unique functional of both these densities. 

Variational Procedure (A) 

Just as the single particle Hartree–Fock equations can be derived from a 
variational procedure, analogous single-particle equations can be derived from the 
density functional expressions. In DFT, the energy functional is the sum of ∫υndτ 
and F[n]. In turn, F[n] can be split into a kinetic energy term, an exchange-
correlation term and an electrostatic energy term. We may formally write (using 
Gaussian units so 1/4πε0 can be left out) 
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Equation (3.84), in fact, serves as the definition of Exc[n]. The variational principle 
then states that 
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subject to δ∫n(r)dτ = δN = 0, where 
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Using a Lagrange multiplier μ to build in the constraint of a constant number of 
particles, and making 
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we can write 
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Defining 
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(an exchange correlation potential which, in general may be nonlocal), we can 
then define an effective potential as 

 ∫ ′−
′′

++=
||

d)()()()( 2
xceff rr

rrrr τυυ nev . (3.90) 

The Euler–Lagrange equations can now be written as 
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Kohn–Sham Equations (A) 

We need to find usable expressions for the kinetic energy and the exchange 
correlation potential. Kohn and Sham assumed that there existed some N single-
particle wave functions ui(r), which could be used to determine the electron 
density. They assumed that if this made an error in calculating the kinetic energy, 
then this error could be lumped into the exchange correlation potential. Thus, 
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and assume the kinetic energy can be written as 
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where units are used so ћ2/m = 1. Notice this is a kinetic energy for non interacting 
particles In order for FKE to represent the kinetic energy, the ui must be 
orthogonal. Now, without loss in generality, we can write 
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with the ui constrained to be orthogonal so ∫ui
*ui = δij. The energy functional E0[n] 

is now given by 
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Using Lagrange multipliers εij to put in the orthogonality constraints, the 
variational principle becomes 

 0d][ 10 =−∑ ∫=
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i iiij uunE τδεδ . (3.96) 

This leads to 
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Since the ui
* can be treated as independent, the terms in the bracket can be set 

equal to zero. Further, since εij is Hermitian, it can be diagonalized without 
affecting the Hamiltonian or the density. We finally obtain one form of the Kohn–
Sham equations 

 iii uuv ε=⎟
⎠
⎞

⎜
⎝
⎛ +∇− )(

2
1

eff
2 r , (3.98) 

where veff(r) has already been defined. There is no Koopmans’ Theorem in DFT 
and care is necessary in the interpretation of εi. In general, for DFT results for 
excited states, the literature should be consulted. We can further derive an 
expression for the ground state energy. Just as for the Hartree–Fock case, the 
ground-state energy does not equal ∑εi. However, using the definition of n, 
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Equations (3.90), (3.92), and (3.98) are the Kohn–Sham equations. If υxc were 
zero these would just be the Hartree equations. Substituting the expression into the 
equation for the ground-state energy, we find 
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We now want to look at what happens when we include spin. We must define 
both spin-up and spin-down densities, n↑ and n↓. The total density n would then be 
a sum of these two, and the exchange correlation energy would be a functional of 
both. This is shown as follows: 

 ],[xcxc ↓↑= nnEE . (3.101) 

We also assume single-particle states exist, so 
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and 
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Similarly, there would be both spin-up and spin-down exchange correlation 
energy as follows: 
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Using σ to represent either ↑ or ↓, we can find both the single-particle equations 
and the expression for the ground-state energy 
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over N lowest εiσ. 

Local Density Approximation (LDA) to υxc (A) 

The equations are still not in a tractable form because we have no expression for 
υxc. We assume the local density approximation of Kohn and Sham, in which we 
assume that locally Exc can be calculated as if it were a uniform electron gas. That 
is, we assume for the spinless case 

 ∫= τε d)]([uniform
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xc rnnE , 

and for the spin 1/2 case, 
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where εxc represents the energy per electron. For the spinless case, the exchange-
correlation potential can be written 
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and 
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by the chain rule. So, 
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Thus, 
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The exchange correlation energy per particle can be written as a sum of exchange 
and correlation energies, εxc(n) = εx(n) + εc(n). The exchange part can be 
calculated from the equations 
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see (3.63), where 1/2 in Ex is inserted so as not to count interactions twice. Since 
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we obtain by doing all the integrals, 
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By applying this equation locally, we obtain the Dirac exchange energy functional 

 3/1)]([)( rncn xx −=ε , (3.115) 

where 
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The calculation of εc is lengthy and difficult. Defining rs so 

 
n
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3
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one can derive exact expressions for εc at large and small rs. An often-used 
expression in atomic units (see Appendix A) is 
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Other expressions are often given. See, e.g., Ceperley and Alder [3.9] and 
Pewdew and Zunger [3.39]. More complicated expressions are necessary for the 
nonspin compensated case (odd number of electrons and/or spin-dependent 
potentials). 

Reminder: Functions and Functional Derivatives A function assigns a 
number g(x) to a variable x, while a functional assigns a number F[g] to a function 
whose values are specified over a whole domain of x. If we had a function 
F(g1,g2,…,gn) of the function evaluated at a finite number of xi, so that g1 = g(x1), 
etc., the differential of the function would be 
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Since we are dealing with a continuous domain D of the x-values over a whole 
domain, we define a functional derivative in a similar way. But now, the sum 
becomes an integral and the functional derivative should really probably be called 
a functional derivative density. However, we follow current notation and 
determine the variation in F (δF) in the following way: 
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This relates to more familiar ideas often encountered with, say, Lagrangians. 
Suppose 

 txxtxxLxF D dd  ; d),(][ == ∫ �� , 

and assume δx = 0 at the boundary of D, then 
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which is the typical result of Lagrangian mechanics. For example, 
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where εx = −cxn(r)1/3, as given by the Dirac exchange. Thus, 
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so, 

 3/1
LDA
x )(

3
4 rnc

n
E

x−=
δ

δ . (3.124) 

Further results may easily be found in the functional analysis literature (see, e.g., 
Parr and Yang [3.38]. 

We summarize in Table 3.1 the one-electron approximations we have discussed 
thus far. 
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Table 3.1. One-electron approximations 

Approximation Equations defining Comments 

Free electrons 

mass effective
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Populate energy levels 
with Fermi–Dirac 
statistics useful for 
simple metals. 

Hartree )()()]([ rrr kkk uEuV =+H   

 coulnucl)( VVV +=r  See (3.9), (3.15) 
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Vcoul arises from Coulomb interactions of 
electrons 
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and V(r) as for Hartree (without the j ≠ k 
restriction in the sum). 

Ek is defined by 
Koopmans’ Theorem 
(3.30). 

Hohenberg–
Kohn Theorem 

An external potential v(r) is uniquely 
determined by the ground-state density of 
electrons in a band system. This local 
electronic charge density is the basic 
quantity in density functional theory, 
rather than the wave function. 

No Koopmans’ theorem. 
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Table 3.1. (cont) 

Approximation Equations defining Comments 

Kohn–Sham 
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p. 219) 
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exchange correlation energy εxc per 
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and see (3.111) and following 

See (3.90). 

3.2  One-Electron Models 

We now have some feeling about the approximation in which an N-electron 
system can be treated as N one-electron systems. The problem we are now 
confronted with is how to treat the motion of one electron in a three-dimensional 
periodic potential. Before we try to solve this problem it is useful to consider the 
problem of one electron in a spatially infinite one-dimensional periodic potential. 
This is the Kronig–Penney model.10 Since it is exactly solvable, the Kronig–
Penney model is very useful for giving some feeling for electronic energy bands, 
Brillouin zones, and the concept of effective mass. For some further details see 
also Jones [58], as well as Wilson [97, p26ff]. 

3.2.1  The Kronig–Penney Model (B) 

The potential for the Kronig–Penney model is shown schematically in Fig. 3.3. A 
good reference for this Section is Jones [58, Chap. 1, Sect. 6]. 

Rather than using a finite potential as shown in Fig. 3.3, it is mathematically 
convenient to let the widths a of the potential become vanishingly narrow and the  
 

                                                           
10 See Kronig and Penny [3.30]. 
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… … 

 
Fig. 3.3. The Kronig–Penney potential 

heights u become infinitely high so that their product au remains a constant. In 
this case, we can write the potential in terms of Dirac delta functions 
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n naxauxV )()( 1δ , (3.125) 

where δ(x) is Dirac’s delta function. 
With delta function singularities in the potential, the boundary conditions on 

the wave functions must be discussed rather carefully. In the vicinity of the origin, 
the wave function must satisfy 
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Integrating across the origin, we find 
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Taking the limit as ε → 0, we find 
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Equation (3.127) is the appropriate boundary condition to apply across the Dirac 
delta function potential. 

Our problem now is to solve the Schrödinger equation with periodic Dirac delta 
function potentials with the aid of the boundary condition given by (3.127). The 
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periodic nature of the potential greatly aids our solution. By Appendix C we know 
that Bloch’s theorem can be applied. This theorem states, for our case, that the wave 
equation has stationary-state solutions that can always be chosen to be of the form 

 )(e)( i xux k
kx

k =ψ , (3.128) 

where 

 )()( 1 xuaxu kk =+ . (3.129) 

Knowing the boundary conditions to apply at a singular potential, and knowing 
the consequences of the periodicity of the potential, we can make short work of 
the Kronig–Penney model. We have already chosen the origin so that the potential 
is symmetric in x, i.e. V(x) = V(−x). This implies that H(x) = H(−x). Thus if ψ(x) is 
a stationary-state wave function, 

 )()()( xExx ψψ =H . 

By a dummy variable change 

 )()()( xExx −=−− ψψH , 

so that 

 )()()( xExx −=− ψψH . 

This little argument says that if ψ(x) is a solution, then so is ψ(−x). In fact, any 
linear combination of ψ(x) and ψ(−x) is then a solution. In particular, we can 
always choose the stationary-state solutions to be even zs(x) or odd za(x): 

 )]()([)( 2
1 xxxzs −+= ψψ , (3.130) 

 )]()([)( 2
1 xxxzs −−= ψψ . (3.131) 

To avoid confusion, it should be pointed out that this result does not necessarily 
imply that there is always a two-fold degeneracy in the solutions; zs(x) or za(x) 
could vanish. In this problem, however, there always is a two-fold degeneracy. 

It is always possible to write a solution as 

 )()()( xBzxAzx as +=ψ . (3.132) 

From Bloch’s theorem 

 )2/(e)2/( 1i1 1
aa ka −= ψψ , (3.133) 

and 

 )2/(e)2/( 1i1 1
aa ka −′=′ ψψ , (3.134) 

where the prime means the derivative of the wave function. 
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Combining (3.132), (3.133), and (3.134), we find that 

 )]2/()2/(e[)]2/(e)2/([ 11i1i1 11
azazBazazA aa

ka
s

ka
s −−=−− , (3.135) 

and 

 )]2/()2/(e[)]2/(e)2/([ 11i1i1 11
azazBazazA aa

ka
s

ka
s ′−−′=−′−′ . (3.136) 

Recalling that zs, za′ are even, and za, zs′ are odd, we can combine (3.135) and 
(3.136) to find that 
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Using the fact that the left-hand side is 
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and cos2 (θ/2) = (1 + cos θ)/2, we can write (3.137) as 
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The solutions of the Schrödinger equation for this problem will have to be 
sinusoidal solutions. The odd solutions will be of the form 

 2/2/     ),sin()( 11 axarxxza ≤≤−= , (3.140) 

and the even solution can be chosen to be of the form [58] 

 ,2/0       ),(cos)( 1axKxrxzs ≤≤+=  (3.141) 

 .02/     ),(cos)( 1 ≤≤−+−= xaKxrxzs  (3.142) 

At first glance, we might be tempted to chose the even solution to be of the form 
cos(rx). However, we would quickly find that it is impossible to satisfy the 
boundary condition (3.127). Applying the boundary condition to the odd solution, 
we simply find the identity 0 = 0. Applying the boundary condition to the even 
solution, we find 

 2/2)(cossin2 =maurKrKr ⋅=− , 

or in other words, K is determined from 
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Putting (3.140) and (3.141) into (3.139), we find 
 rKrW cos= . (3.144) 
Combining (3.138), (3.140), (3.141), and (3.144), we find 
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Using (3.143), this last result can be written 
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Note the fundamental 2π periodicity of kal. This is the usual Brillouin zone 
periodicity. 

Equation (3.146) is the basic equation describing the energy eigenvalues of the 
Kronig–Penney model. The reason that (3.146) gives the energy eigenvalue 
relation is that r is proportional to the square root of the energy. If we substitute 
(3.141) into the Schrödinger equation, we find that 

 
=
mEr 2= . (3.147) 

Thus (3.146) and (3.147) explicitly determine the energy eigenvalue relation (E 
versus k; this is also called the dispersion relationship) for electrons propagating in 
a periodic crystal. 

The easiest thing to get out of this dispersion relation is that there are allowed 
and disallowed energy bands. If we plot the right-hand side of (3.146) versus ra, 
the results are somewhat as sketched in Fig. 3.4. 

 

ra1

–1 

+1 

0 

Right-hand
side of (3.152)

 
Fig. 3.4. Sketch showing how to get energy bands from the Kronig–Penney model 
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From (3.146), however, we see we have a solution only when the right-hand 
side is between +1 and −1 (because these are the bounds of cos kal, with real k). 
Hence the only allowed values of ral are those values in the shaded regions of 
Fig. 3.4. But by (3.147) this leads to the concept of energy bands. 

Detailed numerical analysis of (3.146) and (3.147) will yield a plot similar to 
Fig. 3.5 for the first band of energies as plotted in the first Brillouin zone. Other 
bands could be similarly obtained. 

 

k

E

 
Fig. 3.5. Sketch of the first band of energies in the Kronig–Penney model (an arbitrary 
k = 0 energy is added in) 

Figure 3.5 looks somewhat like the plot of the dispersion relation for a one-
dimensional lattice vibration. This is no accident. In both cases we have waves 
propagating through periodic media. There are significant differences that 
distinguish the dispersion relation for electrons from the dispersion relation for 
lattice vibrations. For electrons in the lowest band as k → 0, E ∝ k2, whereas for 
phonons we found E ∝ |k|. Also, for lattice vibrations there is only a finite number 
of energy bands (equal to the number of atoms per unit cell times 3). For 
electrons, there are infinitely many bands of allowed electronic energies (however, 
for realistic models the bands eventually overlap and so form a continuum). 

We can easily check the results of the Kronig–Penney model in two limiting 
cases. To do this, the equation will be rewritten slightly: 
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In the limit as the potential becomes extremely weak, μ → 0, so that kal ≡ ral. 
Using (3.147), one easily sees that the energies are given by 

 
m
kE
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Equation (3.150) is just what one would expect. It is the free-particle solution. 
In the limit as the potential becomes extremely strong, μ → ∞, we can have 

solutions of (3.148) only if sin ra1 = 0. Thus ral = nπ, where n is an integer, so that 
the energy is given by 

 21

222
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Equation (3.151) is expected as these are the “particle-in-a-box” solutions. 
It is also interesting to study how the widths of the energy bands vary with the 

strength of the potential. From (3.148), the edges of the bands of allowed energy 
occur when P(ral) = ±1. This can certainly occur when ral = nπ. The other values 
of ral at the band edges are determined in the argument below. At the band edges, 
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This equation can be recast into the form, 
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From trigonometric identities 
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Combining the last three equations gives 
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Since 1/tan θ = cot θ, these last two equations can be written 
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and 

 2111 2/)()2/tan()2/( =aumarara += . (3.156) 

Figure 3.6 uses ral = nπ, (3.155), and (3.156) (which determine the upper and 
lower ends of the energy bands) to illustrate the variation of bandwidth with the 
strength of the potential. 
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Fig. 3.6. Variation of bandwidth with strength of the potential 

Note that increasing u decreases the bandwidth of any given band. For a fixed u, 
the higher r (or the energy) is, the larger is the bandwidth. By careful analysis it can 
be shown that the bandwidth increases as al decreases. The fact that the bandwidth 
increases as the lattice spacing decreases has many important consequences as it is 
valid in the more important three-dimensional case. For example, Fig. 3.7 sketches 
the variation of the 3s and 3p bonds for solid sodium. Note that at the equilibrium 
spacing a0, the 3s and 3p bands form one continuous band. 
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Fig. 3.7. Sketch of variation (with distance between atoms) of bandwidths of Na. Each 
energy unit represents 2 eV. The equilibrium lattice spacing is a0. Higher bands such as the 
4s and 3d are left out 

The concept of the effective mass of an electron is very important. A simple 
example of it can be given within the context of the Kronig–Penney model. 
Equation (3.148) can be written as 

 )(cos 11 raPka = . 

Let us examine this equation for small k and for r near r0 (= r at k = 0). By a 
Taylor series expansion for both sides of this equation, we have 
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Squaring both sides and neglecting terms in k4, we have 
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Defining an effective mass m* as 
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we have by (3.147) that 
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where E0 = ћ2r0
2/2m. Except for the definition of mass, this equation is just like an 

equation for a free particle. Thus for small k we may think of m* as acting as 
a mass; hence it is called an effective mass. For small k, at any rate, we see that the 
only effect of the periodic potential is to modify the apparent mass of the particle. 

The appearances of allowed energy bands for waves propagating in periodic 
lattices (as exhibited by the Kronig–Penney model) is a general feature. The 
physical reasons for this phenomenon are fairly easy to find. 

 E 

#
a b c d e f  

Fig. 3.8. Wave propagating through periodic potential. E is the kinetic energy of the 
particle with which there is associated a wave with de Broglie wavelength λ = h/(2mE)1/2 
(internal reflections omitted for clarity) 

Consider a quantum-mechanical particle moving along with energy E as shown 
in Fig. 3.8. Associated with the particle is a wave of de Broglie wavelength λ. In 
regions a–b, c–d, e–f, etc., the potential energy is nonzero. These regions of 
“hills” in the potential cause the wave to be partially reflected and partially 
transmitted. After several partial reflections and partial transmissions at a–b, c–d, 
e–f, etc., it is clear that the situation will be very complex. However, there are two 
possibilities. The reflections and transmissions may or may not result in 
destructive interference of the propagating wave. Destructive interference will 
result in attenuation of the wave. Whether or not we have destructive interference 
depends clearly on the wavelength of the wave (and of course on the spacings of 
the “hills” of the potential) and hence on the energy of the particle. Hence we see 
qualitatively, at any rate, that for some energies the wave will not propagate 
because of attenuation. This is what we mean by a disallowed band of energy. For 
other energies, there will be no net attenuation and the wave will propagate. This 
is what we mean by an allowed band of energy. The Kronig–Penney model 
calculations were just a way of expressing these qualitative ideas in precise 
quantum-mechanical form. 
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3.2.2  The Free-Electron or Quasifree-Electron Approximation (B) 

The Kronig–Penney model indicates that for small |ka1| we can take the periodic 
nature of the solid into account by using an effective mass rather than an actual 
mass for the electrons. In fact we can always treat independent electrons in 
a periodic potential in this way so long as we are interested only in a group of 
electrons that have energy clustered about minima in an E versus k plot (in general 
this would lead to a tensor effective mass, but let us restrict ourselves to minima 
such that E ∝ k2 + constant near the minima). Let us agree to call the electrons 
with effective mass quasifree electrons. Perhaps we should also include Landau’s 
ideas here and say that what we mean by quasifree electrons are Landau 
quasiparticles with an effective mass enhanced by the periodic potential. We will 
often use m rather than m*, but will have the idea that m can be replaced by m* 
where convenient and appropriate. In general, when we actually use a number for 
the effective mass it is necessary to quote what experiment the effective mass 
comes from. Only in this way do we know precisely what we are including. There 
are many interactions beyond that due to the periodic lattice that can influence the 
effective mass of an electron. Any sort of interaction is liable to change the 
effective mass (or “renormalize it”). It is now thought that the electron–phonon 
interaction in metals can be important in determining the effective mass of the 
electrons. 

The quasifree-electron model is most easily arrived at by treating the 
conduction electrons in a metal by the Hartree approximation. If the positive ion 
cores are smeared out to give a uniform positive background charge, then the 
interaction of the ion cores with the electrons exactly cancels the interactions of 
the electrons with each other (in the Hartree approximation). We are left with just 
a one-electron, free-electron Schrödinger equation. Of course, we really need 
additional ideas (such as discussed in Sect. 3.1.4 and in Sect. 4.4 as well as the 
introduction of Chap. 4) to see why the electrons can be thought of as rather 
weakly interacting, as seems to be required by the “uncorrelated” nature of the 
Hartree approximation. Also, if we smear out the positive ion cores, we may then 
have a hard time justifying the use of an effective mass for the electrons or indeed 
the use of a periodic potential. At any rate, before we start examining in detail the 
effect of a three-dimensional lattice on the motion of electrons in a crystal, it is 
worthwhile to pursue the quasifree-electron picture to see what can be learned. 
The picture appears to be useful (with some modifications) to describe the 
motions of electrons in simple monovalent metals. It is also useful for describing 
the motion of charge carriers in semiconductors. At worst it can be regarded as 
a useful phenomenological picture.11 

Density of States in the Quasifree-Electron Model (B) 

Probably the most useful prediction made by the quasifree-electron approximation 
is a prediction regarding the number of quantum states per unit energy. This 
                                                           
11 See also Kittel C [59, 60]. 
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quantity is called the density of states. For a quasifree electron with effective mass 
m*, 
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This equation has the solution (normalized in a volume V) 
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provided that 
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If periodic boundary conditions are applied on a parallelepiped of sides Niai 
and volume V, then k is of the form 
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where the ni are integers and the bi are the customary reciprocal lattice vectors that 
are defined from the ai. (For the case of quasifree electrons, we really do not need 
the concept of reciprocal lattice, but it is convenient for later purposes to carry it 
along.) There are thus N1N2N3 k-type states in a volume (2π)3b1 ⋅ (b2 × b3) of k 
space. Thus the number of states per unit volume of k space is 
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where Ω = a1 ⋅ (a2 × a3). Since the states in k space are uniformly distributed, the 
number of states per unit volume of real space in d3k is 

 33 )2/(d πk . (3.163) 

If E = ћ2k2/2m*, the number of states with energy less than E (with k defined by 
this equation) is 
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where |k| = k, of course. Thus, if N(E) is the number of states in E to E + dE, and 
N(k) is the number of states in k to k + dk, we have 
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Table 3.2. Dependence of density of 
states of free electrons D(E) on dimension 
and energy E. 

 D(E) 

One Dimension A1 E–1/2 

Two Dimensions A2 

Three Dimensions A3 E1/2 

Note that the Ai are constants, and in all 
cases the dispersion relation is of the 
form Ek = =2k2/(2m*). 

But 
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Equation (3.164) is the basic equation for the density of states in the quasifree-
electron approximation. If we include spin, there are two spin states for each k, so 
(3.164) must be multiplied by 2. 

Equation (3.164) is most often used with Fermi–Dirac statistics. The Fermi 
function f(E) tells us the average number of electrons per state at a given 
temperature, 0 ≤ f(E) ≤ 1. With Fermi–Dirac statistics, the number of electrons per 
unit volume with energy between E and E + dE and at temperature T is 
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where K = (1/2π2)(2m*/=2)3/2 and EF is the Fermi energy. 
If there are N electrons per unit volume, then EF is determined from 

 ∫
∞= 0 d)( EEfEKN . (3.166) 
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Once the Fermi energy EF is obtained, the mean energy of an electron gas is 
determined from 

 ∫
∞= 0 d)( EEEEKfE . (3.167) 

We shall find (3.166) and (3.167) particularly useful in the next Section where 
we evaluate the specific heat of an electron gas. We summarize the density of 
states for free electrons in one, two, and three dimensions in Table 3.2. 

Specific Heat of an Electron Gas (B) 

This Section and the next one follow the early ground-breaking work of Pauli and 
Sommerfeld. In this Section all we have to do is to find the Fermi energy from 
(3.166), perform the indicated integral in (3.167), and then take the temperature 
derivative. However, to perform these operations exactly is impossible in closed 
form and so it is useful to develop an approximate way of evaluating the integrals 
in (3.166) and (3.167). The approximation we will use will be an excellent 
approximation for metals at all ordinary temperatures. 

We first develop a general formula (the Sommerfeld expansion) for the 
evaluation of integrals of the needed form for “low” temperatures (room 
temperature qualifies as a very low temperature for the approximation that we will 
use). 

Let f(E) be the Fermi distribution function, and R(E) be a function that vanishes 
when E vanishes. Define 

 ∫
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At low temperature, f ′(E) has an appreciable value only where E is near the Fermi 
energy EF. Thus we make a Taylor series expansion of R(E) about the Fermi 
energy: 
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In (3.170) R″(EF) means 

 
FEEE

ER

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
2

2

d
)(d . 

Combining (3.169) and (3.170), we can write 
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where 
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By (3.166), 
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At absolute zero temperature, the Fermi function f(E) is 1 for 0 ≤ E ≤ EF(0) and 
zero otherwise. Therefore we can also write 
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Equating (3.173) and (3.174), we obtain 
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Since the second term is a small correction to the first, we can let EF = EF(0) in the 
second term: 

 23
2

22
23

)]0([
)(

8
1)]0([ F

F
F E

E
kTE ≅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
− π . 

Again, since the second term is a small correction to the first term, we can use 
(1 − ε)3/2 ≡ 1 − 3/2ε to obtain 
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For all temperatures that are normally of interest, (3.175) is a good approximation 
for the variation of the Fermi energy with temperature. We shall need this 
expression in our calculation of the specific heat. 
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The mean energy Ē   is given by (3.167) or 
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Combining (3.176) and (3.175), we obtain 
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The specific heat of the electron gas is then the temperature derivative of Ē  : 
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This is commonly written as 
 TCV γ= , (3.177) 

where 
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There are more convenient forms for γ. From (3.174), 

 23
2
3 )]0([ −= FENK , 
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The Fermi temperature TF is defined as TF = EF(0)/k so that 
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The expansions for Ē   and EF are expansions in powers of kT/EF(0). Clearly our 
results (such as (3.177)) are valid only when kT << EF(0). But as we already 
mentioned, this does not limit us to very low temperatures. If 1/40 eV corresponds 
to 300° K, then EF(0) ≅ 1 eV (as for metals) corresponds to approximately 
12 000° K. So for temperatures well below 12 000° K, our results are certainly 
valid. 

A similar calculation for the specific heat of a free electron gas using Hartree–
Fock theory yields Cv ∝ (T/lnT), which is not even qualitatively correct. This 
shows that Coulomb correlations really do have some importance, and our free-
electron theory does well only because the errors (involved in neglecting both 
Coulomb corrections and exchange) approximately cancel. 
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Pauli Spin Paramagnetism (B) 

The quasifree electrons in metals show both a paramagnetic and diamagnetic 
effect. Paramagnetism is a fairly weak induced magnetization in the direction of 
the applied field. Diamagnetism is a very weak induced magnetization opposite 
the direction of the applied field. The paramagnetism of quasifree electrons is 
called Pauli spin paramagnetism. This phenomenon will be discussed now 
because it is a simple application of Fermi–Dirac statistics to electrons. 

For Pauli spin paramagnetism we must consider the effect of an external 
magnetic field on the spins and hence magnetic moments of the electrons. If the 
magnetic moment of an electron is parallel to the magnetic field, the energy of the 
electron is lowered by the magnetic field. If the magnetic moment of the electron 
is in the opposite direction to the magnetic field, the energy of the electron is 
raised by the magnetic field. In equilibrium at absolute zero, all of the electrons 
are in as low an energy state as they can get into without violating the Pauli 
principle. Consequently, in the presence of the magnetic field there will be more 
electrons with magnetic moment parallel to the magnetic field than antiparallel. In 
other words there will be a net magnetization of the electrons in the presence of 
a magnetic field. The idea is illustrated in Fig. 3.9, where μ is the magnetic 
moment of the electron and H is the magnetic field. 

Using (3.165), Fig. 3.9, and the definition of magnetization, we see that for 
absolute zero and for a small magnetic field the net magnetization is given 
approximately by 

 HEKM F 0
2

2
1 2)0( μμ= . (3.180) 

The factor of 1/2 arises because Da and Dp (in Fig. 3.9) refer only to half the total 
number of electrons. In (3.180), K is given by (1/2π2)(2m*/ћ2)3/2. 

Equations (3.180) and (3.174) give the following results for the magnetic 
susceptibility: 
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or, if we substitute for EF, 
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This result was derived for absolute zero, it is fairly good for all T << TF(0). 
The only trouble with the result is that it is hard to compare to experiment. 
Experiment measures the total magnetic susceptibility. Thus the above must be 
corrected for the diamagnetism of the ion cores and the diamagnetism of the 
conduction electrons if it is to be compared to experiment. Better agreement with 
experiment is obtained if we use an appropriate effective mass, in the evaluation 
of TF(0), and if we try to make some corrections for exchange and Coulomb 
correlation. 
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Dp Daμ0μH
μ0μH 

Dp Da 

(a) (b)  
Fig. 3.9. A magnetic field is applied to a free-electron gas. (a) Instantaneous situation, and 
(b) equilibrium situation. Both (a) and (b) are at absolute zero. Dp is the density of states of 
parallel (magnetic moment parallel to field) electrons. Da is the density of states of 
antiparallel electrons. The shaded areas indicate occupied states 

Landau Diamagnetism (B) 

It has already been mentioned that quasifree electrons show a diamagnetic effect. 
This diamagnetic effect is referred to as Landau diamagnetism. This Section will 
not be a complete discussion of Landau diamagnetism. The main part will be 
devoted to solving exactly the quantum-mechanical problem of a free electron 
moving in a region in which there is a constant magnetic field. We will find that 
this situation yields a particularly simple set of energy levels. Standard statistical-
mechanical calculations can then be made, and it is from these calculations that 
a prediction of the magnetic susceptibility of the electron gas can be made. The 
statistical-mechanical analysis is rather complicated, and it will only be outlined. 
The analysis here is also closely related to the analysis of the de Haas–van Alphen 
effect (oscillations of magnetic susceptibility in a magnetic field). The de Haas–
van Alphen effect will be discussed in Chap. 5. This Section is also related to the 
quantum Hall effect, see Sect. 12.7.2. In SI units, neglecting spin effects, the 
Hamiltonian of an electron in a constant magnetic field described by a vector 
potential A is (here e > 0) 
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Using ∇⋅(Aψ) = A⋅∇ψ + ψ∇⋅A, we can formally write the Hamiltonian as 
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A constant magnetic field in the z direction is described by the nonunique vector 
potential 
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To check this result we use the defining relation 

 AH ×∇=0μ . (3.185) 

and after a little manipulation it is clear that (3.184) and (3.185) imply H = Hk ̂  . It 
is also easy to see that A defined by (3.184) implies 

 0=⋅ A∇ , (3.186) 

Combining (3.183), (3.184), and (3.186), we find that the Hamiltonian for an 
electron in a constant magnetic field is given by 
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It is perhaps worth pointing out that (3.187) plus a central potential is 
a Hamiltonian often used for atoms. In the atomic case, the term (x ∂/∂y − y ∂/∂x) 
gives rise to paramagnetism (orbital), while the term (x2 + y2) gives rise to 
diamagnetism. For free electrons, however, we will retain both terms as it is 
possible to obtain an exact energy eigenvalue spectrum of (3.187). 

The exact energy eigenvalue spectrum of (3.187) can readily be found by 
making three transformations. The first transformation that it is convenient to 
make is 
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Substituting (3.188) into Hψ = Eψ with H given by (3.187), we see that φ satisfies 
the differential equation 
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A further transformation is suggested by the fact that the effective Hamiltonian of 
(3.189) does not involve y or z so py and pz are conserved: 
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This transformation reduces the differential equation to 
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or more explicitly 
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Finally, if we make a transformation of the dependent variable x, 
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then we find 
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Equation (3.194) is the equation of a harmonic oscillator. Thus the allowed energy 
eigenvalues are 
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where n is an integer and 
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is just the cyclotron frequency. 
This quantum-mechanical result can be given quite a simple classical meaning. 

We think of the electron as describing a helix about the magnetic field. The helical 
motion comes from the fact that, in general, the electron may have a velocity 
parallel to the magnetic field (which velocity is unaffected by the magnetic field) 
in addition to the component of velocity that is perpendicular to the magnetic 
field. The linear motion has the kinetic energy p2/2m = ћ2kz

2/2m, while the circular 
motion is quantized and is mathematically described by harmonic oscillator wave 
functions. 

It is at this stage that the rather complex statistical-mechanical analysis must be 
made. Landau diamagnetism for electrons in a periodic lattice requires a still more 
complicated analysis. The general method is to compute the free energy and 
concentrate on the terms that are monotonic in H. Then thermodynamics tells us 
how to relate the free energy to the magnetic susceptibility. 

A beginning is made by calculating the partition function for a canonical 
ensemble, 

 ∑ −= i i kTEZ )/exp( , (3.197) 
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where Ei is the energy of the whole system in state i, and i may represent several 
quantum numbers. (Proper account of the Pauli principle must be taken in 
calculating Ei from (3.195).) The Helmholtz free energy F is then obtained from 

 ZkTF ln−= , (3.198) 

and from this the magnetization is determined: 
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. (3.199) 

Finally the magnetic susceptibility is determined from 
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The approximate result obtained for free electrons is 

 FPauliLandau kTN 2/2
03

1 μμχχ −=−= . (3.201) 

Physically, Landau diamagnetism (negative χ) arises because the coalescing of 
energy levels (described by (3.195)) increases the total energy of the system. 
Fermi–Dirac statistics play an essential role in making the average energy 
increase. Seitz [82] is a basic reference for this section. 

Soft X-ray Emission Spectra (B) 

So far we have discussed the concept of density of states but we have given no 
direct experimental way of measuring this concept for the quasifree electrons. Soft 
X-ray emission spectra give a way of measuring the density of states. They are 
even more directly related to the concept of the bandwidth. If a metal is exposed 
to a beam of electrons, electrons may be knocked out of the inner or bound levels. 
The conduction-band electrons tend to drop into the inner or bound levels and 
they emit an X-ray photon in the process. If El is the energy of a conduction-band 
electron and E2 is the energy of a bound level, the conduction-band electron emits 
a photon of angular frequency 

 =/)( 21 EE −=ω . 

Because these X-ray photons have, in general, low frequency compared to other 
X-rays, they are called soft X-rays. Compare Fig. 3.10. The conduction-band 
width is determined by the spread in frequency of all the X-rays. The intensities of 
the X-rays for the various frequencies are (at least approximately) proportional to 
the density of states in the conduction band. It should be mentioned that the 
measured bandwidths so obtained are only the width of the occupied portion of 
the band. This may be less than the actual bandwidth. 
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Fig. 3.10. Soft X-ray emission 

The results of some soft X-ray measurements have been compared with Hartree 
calculations.12 Hartree–Fock theory does not yield nearly so accurate agreement 
unless one somehow fixes the omission of Coulomb correlation. With the advent 
of synchrotron radiation, soft X-rays have found application in a wide variety of 
areas. See Smith [3.51]. 

The Wiedeman–Franz Law (B) 

This law applies to metals where the main carriers of both heat and charge are 
electrons. It states that the thermal conductivity is proportional to the electrical 
conductivity times the absolute temperature. Good conductors seem to obey this 
law quite well if the temperature is not too low. 

The straightforward way to derive this law is to derive simple expressions for 
the electrical and thermal conductivity of quasifree electrons, and to divide the 
two expressions. Simple expressions may be obtained by kinetic theory arguments 
that treat the electrons as classical particles. The thermal conductivity will be 
derived first. 

Suppose one has a homogeneous rod in which there is a temperature gradient 
of ∂T/∂z along its length. Suppose Q·  units of energy cross any cross-sectional area 
(perpendicular to the axis of the rod) of the rod per unit area per unit time. Then 
the thermal conductivity k of the rod is defined as 

 
zT

Qk
∂∂

=
/

�
. (3.202) 

Figure 3.11 sets the notation for our calculation of the thermal conductivity. 

                                                           
12 See Raimes [3.42, Table I, p 190]. 
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Fig. 3.11. Picture used for a simple kinetic theory calculation of the thermal conductivity. 
E(0) is the mean energy of an electron in the (x,y)-plane, and λ is the mean free path of an 
electron. A temperature gradient exists in the z direction 

If an electron travels a distance equal to the mean free path λ after leaving the 
(x,y)-plane at an angle θ, then it has a mean energy 

 
z
EE

∂
∂+ θλ cos)0( . (3.203) 

Note that θ going from 0 to π takes care of both forward and backward motion. If 
N is the number of electrons per unit volume and u is their average velocity, then 
the number of electrons that cross unit area of the (x,y)-plane in unit time and that 
make an angle between θ and θ + dθ with the z-axis is 
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From (3.203) and (3.204) it can be seen that the net energy flux is 
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but since the heat capacity is C = N(∂E/∂T), we can write the thermal conductivity 
as 

 λCuk 3
1= . (3.205) 

Equation (3.205) is a basic equation for the thermal conductivity. Fermi–Dirac 
statistics can somewhat belatedly be put in by letting u → uF (the Fermi velocity) 
where 

 FF kTmu =2
2
1 , (3.206) 
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and by using the correct (by Fermi–Dirac statistics) expression for the heat 
capacity, 

 2

22

Fmu
TNkC π= . (3.207) 

It is also convenient to define a relaxation time τ: 

 Fu/λτ ≡ . (3.208) 

The expression for the thermal conductivity of an electron gas is then 

 
m

TNkk τπ 22

3
= . (3.209) 

If we replace m by a suitable m* in (3.209), then (3.209) would probably give 
more reliable results. 

An expression is also needed for the electrical conductivity of a gas of 
electrons. We follow here essentially the classical Drude–Lorentz theory. If vi is 
the velocity of electron i, we define the average drift velocity of N electrons to be 

 ∑ == N
i iv

N
v 1

1 . (3.210) 

If τ is the relaxation time for the electrons (or the mean time between collisions) 
and a constant external field E is applied to the gas of the electrons, then the 
equation of motion of the drift velocity is 

 eEv
dt
vdm −=+

τ
. (3.211) 

The steady-state solution of (3.211) is 

 mEev /τ−= . (3.212) 

Thus the electric current density j is given by 

 EmNevNej )/(2 τ=−= . (3.213) 

Therefore, the electrical conductivity is given by 

 mNe /2τσ = . (3.214) 

Equation (3.214) is a basic equation for the electrical conductivity. Again, (3.214) 
agrees with experiment more closely if m is replaced by a suitable m*. 

Dividing (3.209) by (3.214), we obtain the law of Wiedeman and Franz: 
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, (3.215) 
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where L is by definition the Lorentz number and has a value of 2.45 × 10−8 
w⋅Ω⋅K−2. At room temperature, most metals do obey (3.215); however, the 
experimental value of k/σT may easily differ from L by 20% or so. Of course, we 
should not be surprised as, for example, our derivation assumed that the relaxation 
times for both electrical and thermal conductivity were the same. This perhaps is 
a reasonable first approximation when electrons are the main carriers of both heat 
and electricity. However, it clearly is not good when the phonons carry an 
appreciable portion of the thermal energy. 

We might also note in the derivation of the Wiedeman–Franz law that the 
electrons are treated as partly classical and more or less noninteracting, but it is 
absolutely essential to assume that the electrons collide with something. Without 
this assumption, τ → ∞ and our equations obviously make no sense. We also see 
why the Wiedeman–Franz law may be good even though the expressions for k and 
σ were only qualitative. The phenomenological and unknown τ simply cancelled 
out on division. For further discussion of the conditions for the validity of 
Weideman–Franz law see Berman [3.4]. 

There are several other applications of the quasifree electron model as it is 
often used in some metals and semiconductors. Some of these will be treated in 
later chapters. These include  thermionic and cold field electron emission (Chap. 
11), the plasma edge and transparency of metals in the ultraviolet (Chap. 10), and 
the Hall effect (Chap. 6). 

Angle-resolved Photoemission Spectroscopy (ARPES) (B) 

Starting with Spicer [3.52], a very effective technique for learning about band 
structure has been developed by looking at the angular dependence of the 
photoelectric effect. When light of suitable wavelength impinges on a metal, 
electrons are emitted and this is the photoelectric effect. Einstein explained this by 
saying the light consisted of quanta called photons of energy E = =ω where ω is 
the frequency. For emission of electrons the light has to be above a cutoff 
frequency, in order that the electrons have sufficient energy to surmount the 
energy barrier at the surface. 

The idea of angle-resolved photoemission is based on the fact that the 
component of the electron’s wave vector k parallel to the surface is conserved in 
the emission process. Thus there are three conserved quantities in this process: the 
two components of k parallel to the surface, and the total energy. Various 
experimental techniques are then used to unravel the energy band structure for the 
band in which the electron originally resided (say the valence band Ev(k)). One 
technique considers photoemission from differently oriented surfaces. Another 
uses high enough photon energies that the final state of the electron is free-
electron like. If one assumes high energies so there is ballistic transport near the 
surface then k perpendicular to the surface is also conserved. Energy conservation 
and experiment will then yield both k perpendicular and Ev(k), and k parallel to the 
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surface can also by obtained from experiment—thus Ev(k) is obtained. In most 
cases, the photon momentum can be neglected compared to the electron’s =k.13 

3.2.3  The Problem of One Electron in a Three-Dimensional Periodic 
Potential 

There are two easy problems in this Section and one difficult problem. The easy 
problems are the limiting cases where the periodic potential is very strong or 
where it is very weak. When the periodic potential is very weak, we can treat it as 
a perturbation and we say we have the nearly free-electron approximation. When 
the periodic potential is very strong, each electron is almost bound to a minimum 
in the potential and so one can think of the rest of the lattice as being 
a perturbation on what is going on in this minimum. This is known as the tight 
binding approximation. For the interesting bands in most real solids neither of 
these methods is adequate. In this intermediate range we must use much more 
complex methods such as, for example, orthogonalized plane wave (OPW), 
augmented plane wave (APW), or in recent years more sophisticated methods. 
Many methods are applicable only at high symmetry points in the Brillouin zone. 
For other places we must use more sophisticated methods or some sort of 
interpolation procedure. Thus this Section breaks down to discussing easy limiting 
cases, harder realistic cases, and interpolation methods. 

Metals, Insulators, and Semiconductors (B) 

From the band structure and the number of electrons filling the bands, one can 
predict the type of material one has. If the highest filled band is full of electrons 
and there is a sizeable gap (3 eV or so) to the next band, then one has an insulator. 
Semiconductors result in the same way except the bandgap is smaller (1 eV or so). 
When the highest band is only partially filled, one has a metal. There are other 
issues, however. Band overlapping can complicate matters and cause elements to 
form metals, as can the Mott transition (qv) due to electron–electron interactions. 
The simple picture of solids with noninteracting electrons in a periodic potential 
was exhaustively considered by Bloch and Wilson [97]. 

The Easy Limiting Cases in Band Structure Calculations (B) 

The Nearly Free-Electron Approximation (B) Except for the one-dimensional 
calculation, we have not yet considered the effects of the lattice structure. 
Obviously, the smeared out positive ion core approximation is rather poor, and the 
free-electron model does not explain all experiments. In this section, the effects of 
the periodic potential are considered as a perturbation. As in the one-dimensional 
Kronig–Penny calculation, it will be found that a periodic potential has the effect 
of splitting the allowed energies into bands. It might be thought that the nearly 
                                                           
13 A longer discussion is given by Marder [3.34 footnote 3, p. 654]. 
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free-electron approximation would have little validity. In recent years, by the 
method of pseudopotentials, it has been shown that the assumptions of the nearly 
free-electron model make more sense than one might suppose. 

In this Section it will be assumed that a one-electron approximation (such as 
the Hartree approximation) is valid. The equation that must be solved is 
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Let R be any direct lattice vector that connects equivalent points in two unit cells. 
Since V(r) = V(r + R), we know by Bloch’s theorem that we can always choose 
the wave functions to be of the form 

 )(e)( i rr k
rk

k U⋅=ψ , 

where Uk(r) = Uk(r + R). 
Since both Uk and V have the fundamental translational symmetry of the 

crystal, we can make a Fourier analysis [71] of them in the form 
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In the above equations, the sum over K means to sum over all the lattice points in 
the reciprocal lattice. Substituting (3.217) and (3.218) into (3.216) with the Bloch 
condition on the wave function, we find that 
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By equating the coefficients of eiK·r, we find that 
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If we had a constant potential, then all V(K) with K ≠ 0 would equal zero. Thus 
it makes sense to assume in the nearly free-electron approximation (in other words 
in the approximation that the potential is almost constant) that V(K)<<V(0). As we 
will see, this also implies that U(K)<<U(0). 

Therefore (3.220) can be approximately written 
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Note that the part of the sum in (3.220) involving V(0) has already been placed in 
the left-hand side of (3.221). Thus (3.221) with K = 0 yields 
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These are the free-particle eigenvalues. Using (3.222) and (3.221), we obtain for 
K ≠ 0 in the same approximation: 
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Note that the above approximation obviously fails when 

 02
2
1 =+⋅ KKk , (3.224) 

if V(K) is not equal to zero. 
The k that satisfy (3.224) (for each value of K) span the surface of the Brillouin 

zones. If we construct all Brillouin zones except those for which V(K) = 0 then we 
have the Jones zones. 

 k k+K 

K 
θ
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θ
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Fig. 3.12. Brillouin zones and Bragg reflection 

Condition (3.224) can be given an interesting interpretation in terms of Bragg 
reflection. This situation is illustrated in Fig. 3.12. The k in the figure satisfy 
(3.224). From Fig. 3.12, 

 Kk 2
1sin =θ . (3.225) 

But k = 2π/λ, where λ is the de Broglie wavelength of the electron, and one can 
find K for which K = n ⋅ 2π/a, where a is the distance between a given set of 
parallel lattice planes (see Sect. 1.2.9 where this is discussed in more detail in 
connection with X-ray diffraction). Thus we conclude that (3.225) implies that 
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or that 

 θπ sin2an = . (3.227) 
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Since θ can be interpreted as an angle of incidence or reflection, (3.227) will be 
recognized as the familiar law describing Bragg reflection. It will presently be 
shown that at the Jones zone, there is a gap in the E versus k energy spectrum. 
This happens because the electron is Bragg reflected and does not propagate, and 
this is what we mean by having a gap in the energy. It will also be shown that 
when V(K) = 0 there is no gap in the energy. This last fact is not obvious from the 
Bragg reflection picture. However, we now see why the Jones zones are the 
important physical zones. It is only at the Jones zones that the energy gaps appear. 
Note also that (3.225) indicates a simple way of defining the Brillouin zones by 
construction. We just draw reciprocal space. Starting from any point in reciprocal 
space, we draw straight lines connecting this point to all other points. We then 
bisect all these lines with planes perpendicular to the lines. Starting from the point 
of interest; these planes form the boundaries of the Brillouin zones. The first zone 
is the first enclosed volume. The second zone is the volume between the first set 
of planes and the second set. The idea should be clear from the two-dimensional 
representation in Fig. 3.13. 

a 

 b

b
b

 b

 
Fig. 3.13. Construction of Brillouin zones in reciprocal space: (a) the first Brillouin zone, 
and (b) the second Brillouin zone. The dots are lattice points in reciprocal space. Any 
vector joining two dots is a K-type reciprocal vector 

To finish the calculation, let us treat the case when k is near a Brillouin zone 
boundary so that U(K1) may be very large. Equation (3.220) then gives two 
equations that must be satisfied: 
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The equations have a nontrivial solution only if the following secular equation 
is satisfied: 
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By problem 3.7 we know that (3.230) is equivalent to 
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where 
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For k on the Brillouin zone surface of interest, i.e. for k2 = (k + K l)2, we see that 
there is an energy gap of magnitude 

 |)(|2 1Kkk VEE =− −+ . (3.234) 

This proves our point that the gaps in energy appear whenever |V(K l)| ≠ 0. 
The next question that naturally arises is: “When does V(K l) = 0?” This 

question leads to a discussion of the concept of the structure factor. The structure 
factor arises whenever there is more than one atom per unit cell in the Bravais 
lattice. 

If there are m atoms located at the coordinates rb in each unit cell, if we assume 
each atom contributes U(r) (with the coordinate system centered at the center of 
the atom) to the potential, and if we assume the potential is additive, then with 
a fixed origin the potential in any cell can be written 

 )()( 1 b
m
b UV rrr −= ∑ = . (3.235) 

Since V(r) is periodic in a unit cube, we can write 
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rkKr ie)()( VV , (3.236) 

where 
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and Ω is the volume of a unit cell. Combining (3.235) and (3.237), we can write 
the Fourier coefficient 

 

,de)(e1

de)(1

de)(1)(

1
3ii

1
3)(i

1
3i

∑ ∫

∑ ∫

∑ ∫

=
′⋅−⋅−

=
+′⋅−

=
⋅−

′′=

′′=

−=

m
b Ω

m
b Ω

m
b Ω b

rU
Ω

rU
Ω

rU
Ω

V

b

b

rKrK

rrK

rK

r

r

rrK

 

or 

 )()( KK K vSV ≡ , (3.238) 

where 
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(structure factors are also discussed in Sect. 1.2.9) and 

 ∫ ⋅−≡ ΩΩ
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1
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SK is the structure factor, and if it vanishes, then so does V(K). If there is only one 
atom per unit cell, then |SK| = 1. With the use of the structure factor, we can 
summarize how the first Jones zone can be constructed: 

1. Determine all planes from 

 02
2
1 =+⋅ KKk . 

2. Retain those planes for which SK ≠ 0, and that enclose the smallest volume in k 
space. 

To complete the discussion of the nearly free-electron approximation, the 
pseudopotential needs to be mentioned. However, the pseudopotential is also used 
as a practical technique for band-structure calculations, especially in 
semiconductors. Thus we discuss it in a later section. 

The Tight Binding Approximation (B)14 

This method is often called by the more descriptive name linear combination of 
atomic orbitals (LCAO). It was proposed by Bloch, and was one of the first types 
of band-structure calculation. The tight binding approximation is valid for the 
inner or core electrons of most solids and approximately valid for all electrons in 
an insulator. 

All solids with periodic potentials have allowed and forbidden regions of 
energy. Thus it is no great surprise that the tight binding approximation predicts 
                                                           
14 For further details see Mott and Jones [71]. 
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a band structure in the energy. In order to keep things simple, the tight binding 
approximation will be done only for the s-band (the band of energy formed by s-
electron states). 

To find the energy bands one must solve the Schrödinger equation 

 000 ψψ E=H , (3.241) 

where the subscript zero refers to s-state wave functions. In the spirit of the tight 
binding approximation, we attempt to construct the crystalline wave functions by 
using a superposition of atomic wave functions 

 ∑ = −= N
i iid1 00 )()( Rrr φψ . (3.242) 

In (3.242), N is the number of the lattice ions, φ0 is an atomic s-state wave 
function, and the Ri are the vectors labeling the location of the atoms. 

If the di are chosen to be of the form 

 iid Rk ⋅= ie , (3.243) 

then ψ0(r) satisfies the Bloch condition. This is easily proved: 
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Note that this argument assumes only one atom per unit cell. Actually a much 
more rigorous argument for 

 ∑ =
⋅ −= N

i ii
1 0

i
0 )(e)( Rrr Rk φψ  (3.244) 

can be given by the use of projection operators.15 Equation (3.244) is only an 
approximate equation for ψ0(r). 

Using (3.244), the energy eigenvalues are given approximately by 
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where H is the crystal Hamiltonian. 
We define an atomic Hamiltonian 
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where V0(r − Ri) is the atomic potential. Then 
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0
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15 See Löwdin [3.33]. 
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and 

 )()( 0 ii VV Rrr −−=− HH , (3.248) 

where E0
0  and φ0 are atomic eigenvalues and eigenfunctions, and V is the crystal 

potential energy. 
Using (3.244), we can now write 
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Combining (3.245) and (3.249), we readily find 
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Using (3.244) once more, this last equation becomes 
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Neglecting overlap, we have approximately 
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Combining (3.250) and (3.251) and using the periodicity of V(r), we have 
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or 
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00 rrrRrRk . (3.252) 

Assuming that the terms in the sum of (3.252) are very small beyond nearest 
neighbors, and realizing that only s-wave functions (which are isotropic) are 
involved, then it is useful to define two parameters: 

 ατφφ −=−∫ ∗ d)()]()()[( 000 rrrr VV , (3.253) 

 γτφφ −=−′+∫ ∗ d)()]()()[( 000 rrrRr VVl , (3.254) 

where Rl′ is a vector of the form Rl for nearest neighbors. 
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Thus the tight binding approximation reduces to a two-parameter (α, γ) theory 
with the dispersion relationship (i.e. the E versus k relationship) for the s-band 
given by 

 ∑
′⋅−=−− )n.n.(

i0
00 e)( j

jEE Rkγα . (3.255) 

Explicit expressions for (3.255) are easily obtained in three cases 

1. The simple cubic lattice. Here 

 ),0,0(),0,,0(),0,0,( aaaj ±±±=′R , 

and 

 )coscos(cos2)( 0
00 akakakEE zyx ++−=−− γα . 

The bandwidth in this case is given by 12γ. 

2. The body-centered cubic lattice. Here there are eight nearest neighbors at 
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Equation (3.255) and a little algebra gives  
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The bandwidth in this case is 16γ. 

3. The face-centered cubic lattice. Here the 12 nearest neighbors are at 
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The bandwidth for this case is 16γ. The tight binding approximation is valid 
when γ is small, i.e., when the bands are narrow. 
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As must be fairly obvious by now, one of the most important results that we get 
out of an electronic energy calculation is the density of states. It was fairly easy to 
get the density of states in the free-electron approximation (or more generally 
when E is a quadratic function |k|). The question that now arises is how we can get 
a density of states from a general dispersion relation similar to (3.255). 

Since the k in reciprocal space are uniformly distributed, the number of states 
in a small volume dk of phase space (per unit volume of real space) is 

 3

3

)2(
d2
π

k . 

Now look at Fig. 3.14 that shows a small volume between two constant electronic 
energy surfaces in k-space. 

 ds

dk⊥

ε

ε + dε

 
Fig. 3.14. Infinitesimal volume between constant energy surfaces in k-space 

From the figure we can write 

 ⊥= ksk ddd3 . 

But 

 ⊥= kd|)(| d kkεε ∇ , 

so that if D(ε) is the number of states between ε and ε + dε, we have 

 ∫= s3 |)(|
d 

)2(
2)(

kkεπ
ε

∇
sD . (3.256) 

Equation (3.256) can always be used to calculate a density of states when 
a dispersion relation is known. As must be obvious from the derivation, (3.256) 
applies also to lattice vibrations when we take into account that phonons have 
different polarizations (rather than the different spin directions that we must 
consider for the case of electrons). 
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Table 3.3. Simple models of electronic bands 

Model Energies 

Nearly free electron 
near Brillouin zone boundary on 
surface where 
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Kronig–Penny 

2
2
=
mEr =     amubP 2=

=  

a – distance between barriers 
u – height of barriers 
b – width of barrier 

 

ra
kaPraka sincoscos +=  

determines energies in b → 0, ua → constant limit 

Tight binding approximation calculations are more complicated for p, d., etc., 
bands, and also when there is an overlapping of bands. When things get too 
complicated, it may be easier to use another method such as one of those that will 
be discussed in the next section. 

The tight binding method and its generalizations are often subsumed under the 
name linear combination of atomic orbital (LCAO) methods. The tight binding 
method here gave the energy of an s-band as a function of k. This energy 
depended on the interpolation parameters α and γ. The method can be generalized 
to include other interpolation parameters. For example, the overlap integrals that 
were neglected could be treated as interpolation parameters. Similarly, the 
integrals for the energy involved only nearest neighbors in the sum. If we summed 
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to next-nearest neighbors, more interpolation parameters would be introduced and 
hence greater accuracy would be achieved. 

Results for the nearly free-electron approximation, the tight binding 
approximation, and the Kronig–Penny model are summarized in Table 3.3. 

The Wigner–Seitz method (1933) (B) 

The Wigner–Seitz method [3.57] was perhaps the first genuine effort to solve the 
Schrödinger wave equation and produce useful band-structure results for solids. 
This technique is generally applied to the valence electrons of alkali metals. It will 
also help us to understand their binding. We can partition space with polyhedra. 
These polyhedra are constructed by drawing planes that bisect the lines joining 
each atom to its nearest neighbors (or further neighbors if necessary). The 
polyhedra so constructed are called the Wigner–Seitz cells. 

Sodium is a typical solid for which this construction has been used (as in the 
original Wigner–Seitz work, see [3.57]), and the Na+ ions are located at the center 
of each polyhedron. In a reasonable approximation, the potential can be assumed 
to be spherically symmetric inside each polyhedron. 

Let us first consider Bloch wave functions for which k = 0 and deal with only 
s-band wave functions. 

The symmetry and periodicity of this wave function imply that the normal 
derivative of it must vanish on the surface of each boundary plane. This boundary 
condition would be somewhat cumbersome to apply, so the atomic polyhedra are 
replaced by spheres of equal volume having radius r0. In this case the boundary 
condition is simply written as 

 0
0

0 =⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=rrr
ψ . (3.257) 

With k = 0 and a spherically symmetric potential, the wave equation that must be 
solved is simply 
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subject to the boundary condition (3.257). The simultaneous solution of (3.257) 
and (3.258) gives both the eigenfunction ψ0 and the eigenvalue E. 

The biggest problem remaining is the usual problem that confronts one in 
making band-structure calculations. This is the problem of selecting the correct 
ion core potential in each polyhedra. We select V(r) that gives a best fit to the 
electronic energy levels of the isolated atom or ion. Note that this does not imply 
that the eigenvalue E of (3.258) will be a free-ion eigenvalue, because we use 
boundary condition (3.257) on the wave function rather than the boundary 
condition that the wave function must vanish at infinity. The solution of (3.258) 
may be obtained by numerically integrating this radial equation. 
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Once ψ0 has been obtained, higher k value wave functions may be 
approximated by 

 0
ie)( ψψ rkr ⋅≅k , (3.259) 

with ψ0 = ψ0(r) being the same in each cell. This set of wave functions at least has 
the virtue of being nearly plane waves in most of the atomic volume, and of 
wiggling around in the vicinity of the ion cores as physically they should. 

Finally, a Wigner–Seitz calculation can be used to explain, from the calculated 
eigenvalues, the cohesion of metals. Physically, the zero slope of the wave 
function causes less wiggling of the wave function in a region of nearly constant 
potential energy. Thus the kinetic and hence total energy of the conduction 
electrons is lowered. Lower energy means cohesion. The idea is shown 
schematically in Fig. 3.15.16 

 

r0
r

ψ
ψ0

ψ 

 
Fig. 3.15. The boundary condition on the wave function ψ0 in the Wigner–Seitz model. The 
free-atom wave function is ψ 

The Augmented Plane Wave Method (A) 

The augmented plane wave method was developed by J. C. Slater in 1937, but 
continues in various forms as a very effective method. (Perhaps the best early 
reference is Slater [88] and also the references contained therein as well as Loucks 
[63] and Dimmock [3.16].) The basic assumption of the method is that the 
potential in a spherical region near an atom is spherically symmetric, whereas the 
potential in regions away from the atom is assumed constant. Thus one gets 
a “muffin tin” as shown in Fig. 3.16. 

The Schrödinger equation can be solved exactly in both the spherical region 
and the region of constant potential. The solutions in the region of constant 
potential are plane waves. By choosing a linear combination of solutions 
(involving several l values) in the spherical region, it is possible to obtain a fit at 
the spherical surface (in value, not in normal derivative) of each plane wave to 

                                                           
16 Of course there are much more sophisticated techniques nowadays using the density 

functional techniques. See, e.g., Schlüter and Sham [3.44] and Tran and Pewdew [3.55]. 
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a linear combination of spherical solutions. Such a procedure gives an augmented 
plane wave for one Wigner–Seitz cell. (As already mentioned, Wigner–Seitz cells 
are constructed in direct space in the same way first Brillouin zones are 
constructed in reciprocal space.) We can extend the definition of the augmented 
plane wave to all points in space by requiring that the extension satisfy the Bloch 
condition. Then we use a linear combination of augmented plane waves in 
a variational calculation of the energy. The use of symmetry is quite useful in this 
calculation. 

  
Fig. 3.16. The “muffin tin” potential of the augmented plane wave method 

Before a small mathematical development of the augmented plane method is 
made, it is convenient to summarize a few more facts about it. First, the exact 
crystalline potential is never either exactly constant or precisely spherically 
symmetric in any region. Second, a real strength of early augmented plane wave 
methods lay in the fact that the boundary conditions are applied over a sphere 
(where it is relatively easy to satisfy them) rather than over the boundaries of the 
Wigner–Seitz cell where it is relatively hard to impose and satisfy reasonable 
boundary conditions. The best linear combination of augmented plane waves 
greatly reduces the discontinuity in normal derivative of any single plane wave. 
As will be indicated later, it is only at points of high symmetry in the Brillouin 
zone that the APW calculation goes through well. However, nowadays with huge 
computing power, this is not as big a problem as it used to be. The augmented 
plane wave has also shed light on why the nearly free-electron approximation 
appears to work for the alkali metals such as sodium. In those cases where the 
nearly free-electron approximation works, it turns out that just one augmented 
plane wave is a good approximation to the actual crystalline wave function. 

The APW method has a strength that has not yet been emphasized. The 
potential is relatively flat in the region between ion cores and the augmented plane 
wave method takes this flatness into account. Furthermore, the crystalline 
potential is essentially identical to an atomic potential when one is near an atom. 
The augmented plane wave method takes this into account also. 

The augmented plane wave method is not completely rigorous, since there are 
certain adjustable parameters (depending on the approximation) involved in its 
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use. The radius R0 of the spherically symmetric region can be such a parameter. 
The main constraint on R0 is that it be smaller than r0 of the Wigner–Seitz method. 
The value of the potential in the constant potential region is another adjustable 
parameter. The type of spherically symmetric potential in the spherical region is 
also adjustable, at least to some extent. 

Let us now look at the augmented plane wave method in a little more detail. 
Inside a particular sphere of radius R0, the Schrödinger wave equation has 
a solution 

 ∑= ml mllml
a YErRd, ),(),()( φθφ r . (3.260) 

For other spheres, φa(r) is constructed from (3.260) so as to satisfy the Bloch 
condition. In (3.260), Rl(r, E) is a solution of the radial wave equation and it is 
a function of the energy parameter E. The dlm are determined by fitting (3.260) to 
a plane wave of the form eik⋅r. This gives a different φa = φa

k  for each value of k. 
The functions φa

k  that are either plane waves or linear combinations of spherical 
harmonics (according to the spatial region of interest) are the augmented plane 
waves φa

k  (r). 
The most general function that can be constructed from augmented plane 

waves and that satisfies Bloch’s theorem is 

 ∑ ++=
n nn

aKG GkGkk rr )()( φψ . (3.261) 

The use of symmetry has already reduced the number of augmented plane waves 
that have to be considered in any given calculation. If we form a wave function 
that satisfies Bloch’s theorem, we form a wave function that has all the symmetry 
that the translational symmetry of the crystal requires. Once we do this, we are not 
required to mix together wave functions with different reduced wave vectors k in 
(3.261). 
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Fig. 3.17. Points of high symmetry (Γ, Δ, X, Σ, M) in the Brillouin zone. [Adapted from 
Ziman JM, Principles of the Theory of Solids, Cambridge University Press, New York, 
1964, Fig. 53, p. 99. By permission of the publisher.] 
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The coefficients Kk+Gn, are determined by a variational calculation of the 
energy. This calculation also gives E(k). The calculation is not completely 
straightforward, however. This is because of the E(k) dependence that is implied 
in the Rl(r,E) when the dlm are determined by fitting spherical solutions to plane 
waves. Because of this, and other obvious complications, the augmented plane 
wave method is practical to use only with a digital computer, which nowadays is 
not much of a restriction. The great merit of the augmented plane wave method is 
that if one works hard enough on it, one gets good results. 

There is yet another way in which symmetry can be used in the augmented 
plane wave method. By the use of group theory we can also take into account 
some rotational symmetry of the crystal. In the APW method (as well as the OPW 
method, which will be discussed) group theory may be used to find relations 
among the coefficients Kk+Gn. The most accurate values for E(k) can be obtained at 
the points of highest symmetry in the zone. The ideas should be much clearer after 
reasoning from Fig. 3.17, which is a picture of a two-dimensional reciprocal space 
with a very simple symmetry. 

For the APW (or OPW) expansions, the expansions are of the form 

 ∑ −−= n nnK GkGkk ψψ . 
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Fig. 3.18. Self-consistent energy bands in ferromagnetic Ni along the three principal 
symmetry directions. The letters along the horizontal axis refer to different symmetry 
points in the Brillouin zone [refer to Bouckaert LP, Smoluchowski R, and Wigner E, 
Physical Review, 50, 58 (1936) for notation]. [Reprinted by permission from Connolly 
JWD, Physical Review, 159(2), 415 (1967). Copyright 1967 by the American Physical 
Society.] 
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Fig. 3.19. Density of states for up (α) and down (β) spins in ferromagnetic Ni. [Reprinted 
by permission from Connolly JWD, Physical Review, 159(2), 415 (1967). Copyright 1967 
by the American Physical Society.] 

Suppose it is assumed that only G1 through G8 need to be included in the 
expansions. Further assume we are interested in computing E(kΔ) for a k on the Δ 
symmetry axis. Then due to the fact that the calculation cannot be affected by 
appropriate rotations in reciprocal space, we must have 

 ,     ,     , 647382 GkGkGkGkGkGk −−−−−− === KKKKKK  
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and so we have only five independent coefficients rather than eight (in three 
dimensions there would be more coefficients and more relations). Complete 
details for applying group theory in this way are available.17 At a general point k 
in reciprocal space, there will be no relations among the coefficients. 

Figure 3.18 illustrates the complexity of results obtained by an APW calcula-
tion of several electronic energy bands in Ni. The letters along the horizontal axis 
refer to different symmetry points in the Brillouin zone. For a more precise 
definition of terms, the paper by Connolly can be consulted. One rydberg (Ry) of 
energy equals approximately 13.6 eV. Results for the density of states (on Ni) 
using the APW method are shown in Fig. 3.19. Note that in Connolly’s calcula-
tions, the fact that different spins may give different energies is taken into 
account. This leads to the concept of spin-dependent bands. This is tied directly to 
the fact that Ni is ferromagnetic. 

The Orthogonalized Plane Wave Method (A) 

The orthogonalized plane wave method was developed by C. Herring in 1940.18 
The orthogonalized plane wave (OPW) method is fairly similar to the 

augmented plane wave method, but it does not seem to be as much used. Both 
methods address themselves to the same problem, namely, how to have wave 
functions wiggle like an atomic function near the cores but behave as a plane 
wave in regions far from the core. Both are improvements over the nearly free-
electron method and the tight binding method. The nearly free-electron model will 
not work well when the wiggles of the wave function near the core are important 
because it requires too many plane waves to correctly reproduce these wiggles. 
Similarly, the tight binding method does not work when the plane-wave behavior 
far from the cores is important because it takes too many core wave functions to 
reproduce correctly the plane-wave behavior. 

The basic assumption of the OPW method is that the wiggles of the 
conduction-band wave functions near the atomic cores can be represented by 
terms that cause the conduction-band wave function to be orthogonal to the core-
band wave functions. We will see how (in the Section The Pseudopotential 
Method) this idea led to the idea of the pseudopotential. The OPW method can be 
stated fairly simply. To each plane wave we add on a sum of (Bloch sums of) 
atomic core wave functions. The functions formed in the previous sentence are 
orthogonal to Bloch sums of atomic wave functions. The resulting wave functions 
are called the OPWs and are used to construct trial wave functions in a variational 
calculation of the energy. The OPW method uses the tight binding approximation 
for the core wave functions. 

Let us be a little more explicit about the technical details of the OPW method. 
Let Ctk(r) be the crystalline atomic core wave functions (where t labels different 
core bands). The conduction band states ψk should look very much like plane 
waves between the atoms and like core wave functions near the atoms. A good 
                                                           
17 See Bouckaert et al [3.7]. 
18 See [3.21, 3.22]. 
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choice for the base set of functions for the trial wave function for the conduction 
band states is 

 ∑−= ⋅
t ttCK )(ei rk

rk
kψ . (3.262) 

The Hamiltonian is Hermitian and so ψk and Ctk(r) must be orthogonal. With Kt 
chosen so that 

 0),( =kk tCψ , (3.263) 

where (u, v) = ∫ u*v dτ, we obtain the orthogonalized plane waves 

 ∑ ⋅⋅ −= t tt CC )()e,(e ii rk
rk

k
rk

kψ . (3.264) 

Linear combinations of OPWs satisfy the Bloch condition and are a good choice 
for the trial wave function ψk

T. 

 .∑ ′ −− ′′= l
T

llK GkGkk ψψ  (3.265) 

The choice for the core wave functions is easy. Let φt(r − Rl) be the atomic 
“core” states appropriate to the ion site Rl. The Bloch wave functions constructed 
from atomic core wave functions are given by 

 ∑ −= ⋅
l ltt lC )(ei RrRk

k φ . (3.266) 

We discuss in Appendix C how such a Bloch sum of atomic orbitals is guaranteed 
to have the symmetry appropriate for a crystal. 

Usually only a few (at a point of high symmetry in the Brillouin zone) OPWs 
are needed to get a fairly good approximation to the crystal wave function. It has 
already been mentioned how the use of symmetry can help in reducing the number 
of variational parameters. The basic problem remaining is to choose the 
Hamiltonian (i.e. the potential) and then do a variational calculation with (3.265) 
as the trial wave function. 

For a detailed list of references to actual OPW calculations (as well as other 
band-structure calculations) the book by Slater [89] can be consulted. Rather 
briefly, the OPW method was first applied to beryllium and has since been applied 
to diamond, germanium, silicon, potassium, and other crystals. 

Better Ways of Calculating Electronic Energy Bands (A) 

The process of calculating good electronic energy levels has been slow in reaching 
accuracy. Some claim that the day is not far off when computers can be 
programmed so that one only needs to push a few buttons to obtain good results 
for any solid. It would appear that this position is somewhat overoptimistic. The 
comments below should convince you that there are many remaining problems. 

In an actual band-structure calculation there are many things that have to be 
decided. We may assume that the Born–Oppenheimer approximation and the 
density functional approximation (or Hartree–Fock or whatever) introduce little 
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error. But we must always keep in mind that neglect of electron–phonon 
interactions and other interactions may importantly affect the electronic density of 
states. In particular this may lead to errors in predicting some of the optical 
properties. We should also remember that we do not do a completely self-
consistent calculation. 

The exchange-correlation term in the density functional approximation is 
difficult to treat exactly so it can be approximated by the free-electron-like Slater 
ρ1/3 term [88] or the related local density approximation. However, density 
functional techniques suggest some factor19 other than the one Slater suggests 
should multiply the ρ1/3 term. In the treatment below we will not concern 
ourselves with this problem. We shall just assume that the effects of exchange 
(and correlation) are somehow lumped approximately into an ordinary crystalline 
potential. 

This latter comment brings up what is perhaps the crux of an energy-band 
calculation. Just how is the “ordinary crystalline potential” selected? We don’t 
want to do an energy-band calculation for all electrons in a solid. We want only to 
calculate the energy bands of the outer or valence electrons. The inner or core 
electrons are usually assumed to be the same in a free atom as in an atom that is in 
a solid. We never rigorously prove this assumption. 

Not all electrons in a solid can be thought of as being nonrelativistic. For this 
reason it is sometimes necessary to put in relativistic corrections.20 

Before we discuss other techniques of band-structure calculations, it is 
convenient to discuss a few features that would be common to any method. 

For any crystal and for any method of energy-band calculation we always start 
with a Hamiltonian. The Hamiltonian may not be very well known but it always is 
invariant to all the symmetry operations of the crystal. In particular the crystal 
always has translational symmetry. The single-electron Hamiltonian satisfies the 
equation, 

 ),(),( lRrprp += HH , (3.267) 

for any Rl. 
This property allows us to use Bloch’s theorem that we have already discussed 

(see Appendix C). The eigenfunctions ψnk (n labeling a band, k labeling a wave 
vector) of H can always be chosen so that 

 )(e)( i rr k
rk

k nn U⋅=ψ , (3.268) 

where 

 )()( rRr kk nln UU =+ . (3.269) 

Three possible Hamiltonians can be listed,21 depending on whether we want to 
do (a) a completely nonrelativistic calculation, (b) a nonrelativistic calculation 
                                                           
19 See Kohn and Sham [3.29]. 
20 See Loucks [3.32]. 
21 See Blount [3.6]. 
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with some relativistic corrections, or (c) a completely relativistic calculation, or at 
least one with more relativistic corrections than (b) has. 

a) Schrödinger Hamiltonian: 
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m
p +=H . (3.270) 

b) Low-energy Dirac Hamiltonian: 
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where m0 is the rest mass and the third term is the spin-orbit coupling term (see 
Appendix F). (More comments will be made about spin-orbit coupling later in 
this chapter). 

c) Dirac Hamiltonian: 

 Vccm ++= p⋅α2
0βH , (3.272) 

where α and β are the Dirac matrices (see Appendix F). 
Finally, two more general comments will be made on energy-band calculations. 

The first is in the frontier area of electron–electron interactions. Some related 
general comments have already been made in Sect. 3.1.4. Here we should note 
that no completely accurate method has been found for computing electronic 
correlations for metallic densities that actually occur [78], although the density 
functional technique [3.27] provides, at least in principle, an exact approach for 
dealing with ground-state many-body effects. Another comment has to do with 
Bloch’s theorem and core electrons. There appears to be a paradox here. We think 
of core electrons as having well-localized wave functions but Bloch’s theorem 
tells us that we can always choose the crystalline wave functions to be not 
localized. There is no paradox. It can be shown for infinitesimally narrow energy 
bands that either localized or nonlocalized wave functions are possible because 
a large energy degeneracy implies many possible descriptions [95, p. 160], [87, 
Vol. II, p. 154ff]. Core electrons have narrow energy bands and so core electronic 
wave functions can be thought of as approximately localized. This can always be 
done. For narrow energy bands, the localized wave functions are also good 
approximations to energy eigenfunctions.22 

                                                           
22 For further details on band structure calculations, see Slater [88, 89, 90] and Jones and 

March [3.26, Chap. 1]. 
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Interpolation and Pseudopotential Schemes (A) 

An energy calculation is practical only at points of high symmetry in the Brillouin 
zone. This statement is almost true but, of course, as computers become more and 
more efficient, calculations at a general point in the Brillouin zone become more 
and more practical. Still, it will be a long time before the calculations are so 
“dense” in k-space that no (nontrivial) interpolations between calculated values 
are necessary. Even if such calculations were available, interpolation methods 
would still be useful for many considerations in which their accuracy was 
sufficient. The interpolation methods are the LCAO method (already mentioned in 
the tight binding method section), the pseudopotential method (which is closely 
related to the OPW method and will be discussed), and the k · p method. Since the 
first two methods have other uses let us discuss the k · p method. 

The k · p Method (A)23 We let the index n label different bands. The solutions of 

 kk k nnn E ψψ )(=H  (3.273) 

determine the energy band structure En(k). By Bloch’s theorem, the wave 
functions can be written as 

 k
rk

k nn U⋅= ieψ . 

Substituting this result into (3.273) and multiplying both sides of the resulting 
equation by e−ik·r gives 

 kk
rkrk k nnn UEU )()ee( ii =⋅⋅− H . (3.274) 

It is possible to define 

 rkrkrkp ⋅⋅−≡+ ii ee),( HH = . (3.275) 

It is not entirely obvious that such a definition is reasonable; let us check it for 
a simple example. 

If H = p2/2m, then H(p + ћk) = (1/2m)(p2 + 2ћk ⋅ p + ћ2k2). Also 
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which is the same as [H(p + hk)]F for our example. 

                                                           
23 See Blount [3.6]. 
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By a series expansion 
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Note that if H = p2/2m, where p is an operator, then 

 vp
p ≡=

∂
∂≡

mp
H

H∇ , (3.277) 

where v might be called a velocity operator. Further 

 il
li mpp

δ12
=

∂∂
∂ H , (3.278) 

so that (3.276) becomes 
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Defining 

 mv /)( kvk =+≡ , (3.280) 

and 

 
m2

)(
22kkvk

′
+′=′ == ⋅H , (3.281) 

we see that 

 HHH ′++≅′++ ),()( rkpkkp === . (3.282) 

Thus comparing (3.274), (3.275), (3.280), (3.281), and (3.282), we see that if we 
know Unk, Enk, and v for a k, we can find En,k+k′. for small k′ by perturbation 
theory. Thus perturbation theory provides a means of interpolating to other 
energies in the vicinity of Enk. 
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The Pseudopotential Method (A) The idea of the pseudopotential relates to the 
simple idea that electron wave functions corresponding to different energies are 
orthogonal. It is thus perhaps surprising that it has so many ramifications as we 
will indicate below. Before we give a somewhat detailed exposition of it, let us 
start with several specific comments that otherwise might be lost in the ensuing 
details. 

1. In one form, the idea of a pseudopotential originated with Enrico Fermi 
[3.17]. 

2. The pseudopotential and OPW methods are focused on constructing valence 
wave functions that are orthogonal to the core wave functions. The 
pseudopotential method clearly relates to the orthogonalized plane wave 
method. 

3. The pseudopotential as it is often used today was introduced by Phillips and 
Kleinman [3.40]. 

4. More general formalisms of the pseudopotential have been given by Cohen 
and Heine [3.14] and Austin et al [3.3]. 

5. In the hands of Marvin Cohen it has been used extensively for band-structure 
calculations of many materials – particularly semiconductors (Cohen [3.11], 
and also [3.12, 3.13]). 

6. W. A. Harrison was another pioneer in relating pseudopotential calculations 
to the band structure of metals [3.19]. 

7. The use of the pseudopotential has not died away. Nowadays, e.g., people are 
using it in conjunction with the density functional method (for an 
introduction, see, e.g., Marder [3.34, p232ff]. 

8. Two complications of using the pseudopotential are that it is nonlocal and 
nonunique. We will show these below, as well as note that it is short range. 

9. There are many aspects of the pseudopotential. There is the empirical 
pseudopotential method (EPM), ab initio calculations, and the pseudopotential 
can also be considered with other methods for broad discussions of solid-state 
properties [3.12]. 

10. As we will show below, the pseudopotential can be used as a way to assess 
the validity of the nearly free-electron approximation, using the so-called 
cancellation theorem. 

11. Since the pseudopotential, for valence states, is positive it tends to cancel the 
attractive potential in the core leading to an empty-core method (ECM). 
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12. We will also note that the pseudopotential projects into the space of core 
wave functions, so its use will not change the valence eigenvalues. 

13. Finally, the use of pseudopotentials has grown vastly and we can only give an 
introduction. For further details, one can start with a monograph like Singh 
[3.45]. 

We start with the original Phillips–Kleinman derivation of the pseudopotential 
because it is particularly transparent. 

Using a one-electron picture, we write the Schrödinger equation as 

 ψψ E=H , (3.283) 

where H is the Hamiltonian of the electron in energy state E with corresponding 
eigenket |ψ〉. For core eigenfunctions |c〉 

 cEc c=H . (3.284) 

If |ψ〉 is a valence wave function, we require that it be orthogonal to the core wave 
functions. Thus for appropriate |φ〉 it can be written 

 ∑ ′ ′′−= c cc φφψ , (3.285) 

so 〈c|ψ〉 = 0 for all c, c′ ∈ the core wave functions. |φ〉 will be a relatively smooth 
function as the “wiggles” of |ψ〉 in the core region that are necessary to make 〈c|ψ〉 
= 0 are included in the second term of (3.285) (This statement is complicated by 
the nonuniqueness of |φ〉 as we will see below). See also Ziman [3.59, p. 53]. 

Substituting (3.285) in (3.283) and (3.284) yields, after rearrangement 

 φφ EVR =+ )(H , (3.286) 

where 

 ∑ −= c cR ccEEV φφ )( . (3.287) 

Note VR has several properties: 

a. It is short range since the wave function ψc corresponds to |c〉 and is short range. 
This follows since if r|r′〉 = r′|r′〉 is used to define |r〉, then ψc(r) = 〈r|c〉. 

b. It is nonlocal since 

 ∑ ∫ ∗′−=′ c cccR VEEV d)()()()( rrrr φψψφ , 

or VRφ(r) ≠ f(r)φ(r) but rather the effect of VR on φ involves values of φ(r) for all 
points in space. 

c. The pseudopotential is not unique. This is most easily seen by letting |φ〉 → |φ〉 
+ δ|φ〉 (provided δ|φ〉 can be expanded in core states). By substitution δ|ψ〉 → 0 but 

 ∑ ≠−= c cR ccEEV 0)( δφφδ . 
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d. Also note that E > Ec, when dealing with valence wave functions so VR > 0 and 
since V < 0, |V + VR| < |V|. This is an aspect of the cancellation theorem. 

e. Note also, by (3.287) that since VR projects |φ〉 into the space of core wave 
functions it will not affect the valence eigenvalues as we have mentioned and will 
see in more detail later. 

Since H = T + V where T is the kinetic energy operator and V is the potential 
energy, if we define the total pseudopotential Vp as 

 Rp VVV += , (3.288) 

then (3.286) can be written as 

 φφ EVT p =+ )( . (3.289) 

To derive further properties of the pseudopotential it is useful to develop the 
formulation of Austin et al. We start with the following five equations: 

 nnn E ψψ =H  (n = c or v), (3.290) 

 nnnRnp EV φφφ =+= )(HH  (allowing for several φ), (3.291) 

 ∑= c ccR FV ψφφ , (3.292) 

where note Fc is arbitrary so VR is not yet specified. 

 ∑∑ += ′ ′′ v v
c
vc c

c
cc ψαψαφ , (3.293) 

 ∑∑ ′ ′′+= v v
v
vc c

v
cv ψαψαφ . (3.294) 

Combining (3.291) with n = c and (3.293), we obtain 
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c
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c
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Using (3.283), we have 
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Using (3.292), this last equation becomes 
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This can be recast as 
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Taking the inner product of (3.298) with ψv′ gives 

 0or0)(or0)( ==−=− ′′′
′∑ c
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vcv

c
v EEEE ααδα . 

unless there is some sort of strange accidental degeneracy. We shall ignore such 
degeneracies. This means by (3.293) that 

 ∑ ′ ′′= c c
c
cc ψαφ . (3.299) 

Equation (3.298) becomes 

 0])[( =+−∑ ′′′ ′′′′′′
′′

′′cc c
c
ccc

c
ccc FEE ψαψδ . (3.300) 

Taking the matrix element of (3.300) with the core state ψc and summing out a 
resulting Kronecker delta function, we have 
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c
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ccc FEE αψδ . (3.301) 

For nontrivial solutions of (3.301), we must have 

 0])det[( =+− ′′
′′

cc
c
ccc FEE ψδ . (3.302) 

The point to (3.302) is that the “core” eigenvalues Ē  c are formally determined. 
Combining (3.291) with n = v, and using φv from (3.294), we obtain 
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By (3.283) this becomes 
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Using (3.292), this becomes 

 
.0

)()(

=++

−+−

∑ ∑∑ ∑
∑∑

′ ′′′

′ ′′′

v cc vc
v
vc cc cc

v
c

v vvv
v
vc cvc

v
c

FF

EEEE

ψψαψψα
ψαψα

 (3.303) 

With a little manipulation we can write (3.303) as 
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Taking the inner product of (3.304) with ψv and ψv″, we find 

 0)( =− v
vvv EE α , (3.305) 

and 

 0)( =− ′′′′
v
vvv EE α . (3.306) 

This implies that Ev = Ē   v  and 

 0=′′
v
vα . 

The latter result is really true only in the absence of degeneracy in the set of Ev. 
Combining with (3.294), we have (if αv

v   = 1) 

 ∑+= c c
v
cvv ψαψφ . (3.307) 

Equation (3.304) can now be written 

 vcc
v
ccc

c
cvc FFEE ψαψδ ′′′ ′′′′

′
′′′′ −=+−∑ ])[( . (3.308) 

With these results we can understand the general pseudopotential theorem as 
given by Austin at al.: 

The pseudo-Hamiltonian HP = H + VR, where VRφ = ∑ c 〈Fc|φ〉ψc, has the same 
valence eigenvalues Ev as H does. The eigenfunctions are given by (3.299) and 
(3.307). 

We get a particularly interesting form for the pseudopotential if we choose the 
arbitrary function to be 
 cc VF ψ−= . (3.309) 

In this case 
 ∑−= c ccR VV ψφψφ , (3.310) 

and thus the pseudo-Hamiltonian can be written 
 ∑−+=++= c nccnnnRnp VVTVVT φψψφφφφ )(H . (3.311) 

Note that by completeness 
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so 
 ∑∑ =− v nvvc nccn VVV φψψφψψφ . (3.312) 

If the ψc are almost a complete set for Vφn, then the right-hand side of (3.312) is 
very small and hence 
 nnp Tφφ ≅H . (3.313) 
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This is another way of looking at the cancellation theorem. Notice this equation is 
just the free-electron approximation, and, furthermore, Hp has the same 
eigenvalues as H. Thus we see how the nearly free-electron approximation is 
partially justified by the pseudopotential. 

Physically, the use of a pseudopotential assures us that the valence wave 
functions are orthogonal to the core wave functions. Using (3.307) and the 
orthonormality of the core and valence eigenfunction, we can write 

 ∑−= c vccvv φψψφψ   (3.314) 

 .  ) (        vc ccI φψψ∑−≡  (3.315) 

The operator (I − ∑c|ψc〉 〈ψc|) simply projects out from |φv〉 all components that are 
perpendicular to |ψc〉. We can crudely say that the valence electrons would have to 
wiggle a lot (and hence raise their energy) to be in the vicinity of the core and also 
be orthogonal to the core wave function. The valence electron wave functions 
have to be orthogonal to the core wave functions and so they tend to stay out of 
the core. This effect can be represented by an effective repulsive pseudopotential 
that tends to cancel out the attractive core potential when we use the effective 
equation for calculating volume wave functions. 

Since VR can be constructed so as to cause V + VR to be small in the core 
region, the following simplified form of the pseudopotential VP is sometimes used. 
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This is sometimes called the empty-core pseudopotential or empty-core method 
(ECM). 

Cohen [3.12, 3.13], has developed an empirical pseudopotential model (EPM) 
that has been very effective in relating band-structure calculations to optical 
properties. He expresses Vp(r) in terms of Fourier components and structure factors 
(see [3.12, p. 21]). He finds that only a few Fourier components need be used and 
fitted from experiment to give useful results. If one uses the correct nonlocal 
version of the pseudopotential, things are more complicated but still doable [3.12, 
p. 23]. Even screening effects can be incorporated as discussed by Cohen and Heine 
[3.13]. 

Note that the pseudopotential can be broken up into different core angular 
momentum components (where the core wave functions are expressed in atomic 
form). To see this, write 

 LNc ,= , 
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where N is all the quantum number necessary to define c besides L. Thus 

 ( )∑ ∑
∑
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−=
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c cR
LNEELN

cEEcV
,)(,

)(

,
. 

This may help in finding simplified calculations. 
For further details see Chelikowsky and Louie [3.10]. This is a Festschrift in 

honor of Marvin L. Cohen. This volume shows how the calculations of Cohen and 
his school intertwine with experiment: in many cases explaining experimental 
results, and in other cases predicting results with consequent experimental 
verification. We end this discussion of pseudopotentials with a qualitative roundup. 

Table 3.4. Band structure and related references 

Band-structure calculational 
techniques 

Reference Comments 

Nearly free electron methods 
(NFEM) 

3.2.3 Perturbed electron gas of free 
electrons 

Tight binding/LCAO methods 
(TBM) 

3.2.3 Starts from atomic nature of electron 
states. 

Wigner–Seitz method [3.57], 3.2.3 First approximate quantitative 
solution of wave equation in crystal. 

Augmented plane wave and 
related methods (APW) 

[3.16], [63], 3.2.3 Muffin tin potential  with spherical 
wave functions inside and plane 
wave outside (Slater). 

Orthogonalized plane wave 
methods (OPW) 

Jones [58] Ch. 6, 
[3.58], 3.2.3 

Basis functions are plane waves plus 
core wave functions (Herring). 
Related to pseudopotential. 

Empirical pseudopotential 
methods (EPM) as well as 
Self-consistent and ab initio 
pseudopotential methods 

[3.12, 3.20] Builds in orthogonality to core with 
a pseudopotential. 

Kohn–Korringa–Rostocker or 
KKR Green function methods 

[3.26] Related to APW. 

Kohn–Sham density 
functional Techniques (for 
many-body properties) 

[3.23, 3.25, 3.27, 
3.28] 

For calculating ground-state 
properties. 

k · p Perturbation Theory [3.5, 3.16, 3.26], 
3.2.3  

An interpolation scheme. 

G. W. approximation [3.2] G is for Green’s function, W for 
Coulomb interaction, Evaluates self-
energy of quasi-particles. 

General reference [3.1, 3.37]  
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As already mentioned, M. L. Cohen’s early work (in the 1960s) was with the 
empirical pseudopotential. In brief review, the pseudopotential idea can be traced 
back to Fermi and is clearly based on the orthogonalized plane wave (OPW) 
method of Conyers Herring. In the pseudopotential method for a solid, one 
considers the ion cores as a background in which the valence electrons move. J. C. 
Phillips and L. Kleinman demonstrated how the requirement of orthogonality of 
the valence wave function to core atomic functions could be folded into the 
potential. M. L. Cohen found that the pseudopotentials converged rapidly in 
Fourier space, and so only a few were needed for practical calculations. These 
could be fitted from experiment (reflectivity for example), and then the resultant 
pseudopotential was very useful in determining the optical response – this method 
was particularly useful for several semiconductors. Band structures, and even 
electron–phonon interactions were usefully determined in this way. M. L. Cohen 
and his colleagues have continually expanded the utility of pseudopotentials. One 
of the earliest extensions was to an angular-momentum-dependent nonlocal 
pseudopotential, as discussed above. This was adopted early on in order to 
improve the accuracy, at the cost of more computation. Of course, with modern 
computers, this is not much of a drawback. 

Nowadays, one often uses a pseudopotential-density functional method. One 
can thus develop ab initio pseudopotentials. The density functional method (in say 
the local density approximation – LDA) allows one to treat the electron–electron 
interaction in the core of the atom quite accurately. As we have already shown, the 
density functional method reduces a many-electron problem to a set of one-
electron equations (the Kohn–Sham equations) in a rational way. Morrel Cohen 
(another pioneer in the elucidation of pseudopotentials, see Chap. 23 of 
Chelikowsky and Louie, op cit) has said, with considerable truth, that the Kohn–
Sham equations taught us the real meaning of our one-electron calculations. One 
then uses the pseudopotential to treat the interaction between the valence electrons 
and the ion core. Again as noted, the pseudopotential allows us to understand why 
the electron–ion core interaction is apparently so small. This combined 
pseudopotential-density functional approach has facilitated good predictions of 
ground-state properties, phonon vibrations, and structural properties such as phase 
transitions caused by pressure. 

There are still problems that need additional attention, such as the correct 
prediction of bandgaps, but it should not be overlooked that calculations on real 
materials, not “toy” models are being considered. In a certain sense, M. L. Cohen 
and his colleagues are developing a “Standard Model of Condensed Matter 
Physics." The Holy Grail is to feed in only information about the constituents, and 
from there, at a given temperature and pressure, to predict all solid-state 
properties. Perhaps at some stage one can even theoretically design materials with 
desired properties. Along this line, the pseudopotential-density functional method 
is now being applied to nanostructures such as arrays of quantum dots 
(nanophysics, quantum dots, etc. are considered in Chap. 12 of Chelikowsky and 
Louie). 

We have now described in some detail the methods of calculating the E(k) 
relation for electrons in a perfect crystal. Comparisons of actual calculations with 
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experiment will not be made here. Later chapters give some details about the type 
of experimental results that need E(k) information for their interpretation. In 
particular, the Section on the Fermi surface gives some details on experimental 
results that can be obtained for the conduction electrons in metals. Further 
references for band-structure calculations are in Table 3.4. See also Altman [3.1]. 

The Spin-Orbit Interaction (B) 

As shown in Appendix F, the spin-orbit effect can be correctly derived from the 
Dirac equation. As mentioned there, perhaps the most familiar form of the spin-
orbit interaction is the form that is appropriate for spherical symmetry. This form is 

 SL ⋅)(rf=′H . (3.317) 

In (3.317), H′ is the part of the Hamiltonian appropriate to the spin-orbit 
interaction and hence gives the energy shift for the spin-orbit interaction. In solids, 
spherical symmetry is not present and the contribution of the spin-orbit effect to 
the Hamiltonian is 

 )(
2 22

0
pVS ×∇⋅

cm
==H . (3.318) 

There are other relativistic corrections that derive from approximating the Dirac 
equation but let us neglect these. 

A relatively complete account of spin-orbit splitting will be found in Appendix 
9 of the second volume of Slater’s book on the quantum theory of molecules and 
solids [89]. Here, we shall content ourselves with making a few qualitative 
observations. If we look at the details of the spin-orbit interaction, we find that it 
usually has unimportant effects for states corresponding to a general point of the 
Brillouin zone. At symmetry points, however, it can have important effects 
because degeneracies that would otherwise be present may be lifted. This lifting 
of degeneracy is often similar to the lifting of degeneracy in the atomic case. Let 
us consider, for example, an atomic case where the j = l ± ½ levels are degenerate 
in the absence of spin-orbit interaction. When we turn on a spin-orbit interaction, 
two levels arise with a splitting proportional to L · S (using J2 = L2 + S2 + 2L · S). 
The energy difference between the two levels is proportional to 
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This result is valid when l > 0. When l = 0, there is no splitting. Similar results are 
obtained in solids. A practical case is shown in Fig. 3.20. Note that we might have 
been able to guess (a) and (b) from the atomic consideration given above. 
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Fig. 3.20. Effect of spin-orbit interaction on the l = 1 level in solids: (a) no spin-orbit, six 
degenerate levels at k = 0 (a point of cubic symmetry), (b) spin-orbit with inversion 
symmetry (e.g. Ge), (c) spin-orbit without inversion symmetry (e.g. InSb). [Adapted from 
Ziman JM, Principles of the Theory of Solids, Cambridge University Press, New York, 
1964, Fig. 54, p. 100. By permission of the publisher.] 

3.2.4  Effect of Lattice Defects on Electronic States in Crystals (A) 

The results that will be derived here are similar to the results that were derived for 
lattice vibrations with a defect (see Sect. 2.2.5). In fact, the two methods are 
abstractly equivalent; it is just that it is convenient to have a little different 
formalism for the two cases. Unified discussions of the impurity state in a crystal, 
including the possibility of localized spin waves, are available.24 Only the case of 
one-dimensional motion will be considered here; however, the method is 
extendible to three dimensions. 

The model of defects considered here is called the Slater–Koster model.25 In the 
discussion below, no consideration will be given to the practical details of the 
calculation. The aim is to set up a general formalism that is useful in the 
understanding of the general features of electronic impurity states.26 The Slater–
Koster model is also useful for discussing deep levels in semiconductors (see 
Sect. 11.3). 

In order to set the notation, the Schrödinger equation for stationary states will 
be rewritten: 

 )()()( ,, xkEx knnkn ψψ =H . (3.319) 

                                                           
24 See Izynmov [3.24]. 
25 See [3.49, 3.50] 
26 Wannier [95, p181ff] 
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In (3.319), H is the Hamiltonian without defects, n labels the different bands, and 
k labels the states within each band. The solutions of (3.319) are assumed known. 

We shall now suppose that there is a localized perturbation (described by V) on 
one of the lattice sites of the crystal. For the perturbed crystal, the equation that 
must be solved is 

 ψψ EV =+ )(H . (3.320) 

(This equation is true by definition; H + V is by definition the total Hamiltonian of 
the crystal with defect.) 

Green’s function for the problem is defined by 

 )(4),(),( 000 xxxxEGxxG EE −−=− πδH . (3.321) 

Green’s function is required to satisfy the same boundary conditions as ψnk(x). 
Writing ψnk = ψm, and using the fact that the ψm form a complete set, we can write 

 ∑= m mmE xAxxG )(),( 0 ψ . (3.322) 

Substituting (3.322) into the equation defining Green’s function, we obtain 

 )(4)()( 0xxxEEAm mmm −−=−∑ πδψ . (3.323) 

Multiplying both sides of (3.323) by ψn
*(x) and integrating, we find 

 
EE

xA
n

n
n −

−=
∗ )(4 0ψπ . (3.324) 

Combining (3.324) with (3.322) gives 

 ∑ −
−=

∗

m
m

nm
E EE

xxxxG )()(4),( 0
0

ψψπ . (3.325) 

Green’s function has the property that it can be used to convert a differential 
equation into an integral equation. This property can be demonstrated. Multiply 
(3.320) by GE

* and integrate: 

 ∫∫∫ ∗∗∗ −=− xVGxGExHG EEE ddd ψψψ . (3.326) 

Multiply the complex conjugate of (3.321) by ψ and integrate: 

 )(4dd 0xxGExGH EE πψψψ −=− ∫∫ ∗∗ . (3.327) 

Since H is Hermitian, 

 ∫∫ ∗∗ = dxGdxG EE HH ψψ . (3.328) 
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Thus subtracting (3.326) from (3.327), we obtain 

 ∫ ∗= xxxVxxGx E d)()(),(
4
1)( 00 ψ
π

ψ . (3.329) 

Therefore the equation governing the impurity problem can be formally written as 

 ∫∑ ∗
−

−= xxxVx
EkE

x
x knkn

n

kn d)()()(
)(

)(
)( ,,

0,
0 ψψ

ψ
ψ . (3.330) 

Since the ψn,k(x) form a complete orthonormal set of wave functions, we can 
define another complete orthonormal set of wave functions through the use of 
a unitary transformation. The unitary transformation most convenient to use in the 
present problem is 

 ∑ −= j n
jak

kn jaxA
N

x )(e1)( )(i
,ψ . (3.331) 

Equation (3.331) should be compared to (3.244), which was used in the tight 
binding approximation. We see the φ0(r − Ri) are analogous to the An(x − ja). The 
φ0(r − Ri) are localized atomic wave functions, so that it is not hard to believe that 
the An(x − ja) are localized. The An(x − ja) are called Wannier functions.27 

In (3.331), a is the spacing between atoms in a one-dimensional crystal (with N 
unit cells) and so the ja (for j an integer) labels the coordinates of the various 
atoms. The inverse of (3.331) is given by 

 ∑ −=− zone)Brillouin  a( ,
)(i )(e1)( k kn

jak
n x

N
jaxA ψ . (3.332) 

If we write the ψn,k as functions satisfying the Bloch condition, it is possible to 
give a somewhat simpler form for (3.332). However, for our purposes (3.332) is 
sufficient. 
Since (3.332) form a complete set, we can expand the impurity-state wave 
function ψ in terms of them: 

 ∑ −= il ll iaxAiaUx , )()()(ψ . (3.333) 

Substituting (3.331) and (3.333) into (3.330) gives 

 
.)()()(e)(

)(
e1 

)()(

i

,
,
,

0

i
,

∫∑

∑

′−′′−−
−

−=

′−′

∗′−

′
′

′

dxaixAaiVUajxAjaxA
kEEN

aixAaiU

lln
ajk

jj
il
kn

n
n

kja
il ll

 

  (3.334) 

                                                           
27 See Wannier [3.56]. 
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Multiplying the above equation by Am
*(x0 – pa), integrating over all space, using 

the orthonormality of the Am, and defining 

 ∫ −′−=′ ∗ xiaxVAajxAijV lnln d)()(),(, , (3.335) 

we find 

 0),(
)(

e1)( ,,

)(i

, =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′′

−
+′ ∑∑ ′

′−

′′ ijV
EkEN

aiU lmjk
m

ajpak
p

i
m
lil l δδ . (3.336) 

For a nontrivial solution, we must have 

 0),(
)(

e1det ,,

)(i
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′′

−
+ ∑ ′

′−

′ ijV
EkEN lmjk

m

ajpk
p

i
m
l δδ . (3.337) 

This appears to be a very difficult equation to solve, but if Vml(j′, i) = 0 for all but 
a finite number of terms, then the determinant would be drastically simplified. 

Once the energy of a state has been found, the expansion coefficients may be 
found by going back to (3.334). 

To show the type of information that can be obtained from the Slater–Koster 
model, the potential will be assumed to be short range (centered on j = 0), and it 
will be assumed that only one band is involved. Explicitly, it will be assumed that 

 0
00

, ),( VijV ij
b
m

b
llm ′′=′ δδδδ . (3.338) 

Note that the local character of the functions defined by (3.332) is needed to make 
such an approximation. 

From (3.337) and (3.338) we find that the condition on the energy is 

 0
)(

1)(
0

=
−

+≡ ∑k
b EkEV

NEf . (3.339) 

Equation (3.339) has N real roots. If V0 = 0, the solutions are just the unperturbed 
energies Eb(k). If V0 ≠ 0, then we can use graphical methods to find E such that 
f(E) is zero. See Fig. 3.21. In the figure, V0 is assumed to be negative. 

The crosses in Fig. 3.21 are the perturbed energies; these are the roots of f(E). 
The poles of f(E) are the unperturbed levels. The roots are all smaller than the 
unperturbed roots if V0 is negative and larger if V0 is positive. The size of the shift 
in E due to V0 is small (negligible for large N) for all roots but one. This is 
characterized by saying that all but one level is “pinned” in between two 
unperturbed levels. As expected, these results are similar to the lattice defect 
vibration problem. It should be intuitive, if not obvious, that the state that splits 
off from the band for V0 negative is a localized state. We would get one such state 
for each band. 
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f = N/V0 

f = 0 

f(E) 

 
Fig. 3.21. A qualitative plot of f(E) versus E for the Slater–Koster model. The crosses 
determine the energies that are solutions of (3.339) 

This Section has discussed the effects of isolated impurities on electronic states. 
We have found, except for the formation of isolated localized states, that the Bloch 
view of a solid is basically unchanged. A related question is what happens to the 
concept of Bloch states and energy bands in a disordered alloy. Since we do not 
have periodicity here, we might expect these concepts to be meaningless. In fact, 
the destruction of periodicity may have much less effect on Bloch states than one 
might imagine. The changes caused by going from a periodic potential to a potential 
for a disordered lattice may tend to cancel one another out.28 However, the entire 
subject is complex and incompletely understood. For example, sufficiently large 
disorder can cause localization of electron states.29 

Problems 

3.1 Use the variational principle to find the approximate ground-state energy of 
the helium atom (two electrons). Assume a trial wave function of the form 
exp[−η(r1+r2)], where rl and r2 are the radial coordinates of the electron. 

3.2 By use of (3.17) and (3.18) show that ∫ |ψ|2dτ = N! |M|2. 

3.3 Derive (3.31) and explain physically why EN
k ≠∑1 ε . 

                                                           
28 For a discussion of these and related questions, see Stern [3.53], and references cited 

therein. 
29 See Cusack [3.15]. 
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3.4 For singly charged ion cores whose charge is smeared out uniformly and for 
plane-wave solutions so that |ψj| = 1, show that the second and third terms on 
the left-hand side of (3.50) cancel. 

3.5 Show that 

 2lnlim
22

0
=

−
+−

→ kk
kk

kk
kk

M

M

M

M
k

, 

and 

 0lnlim
22

=
−
+−

→ kk
kk

kk
kk

M

M

M

M
kk M

, 

relate to (3.64) and (3.65). 

3.6 Show that (3.230) is equivalent to 

 212002
4
100

2
1 ])(|)(|4[)( kkkkk K ′′ −+′±+= EEVEEE , 

where 

 2
2

0
22

0 )(
2

)0(     and     
2

)0( Kkk
kk ′++=+= ′ m

VE
m

VE == . 

3.7 Construct the first Jones zone for the simple cubic lattice, face-centered 
cubic lattice, and body-centered cubic lattice. Describe the fcc and bcc with 
a sc lattice with basis. Assume identical atoms at each lattice point. 

3.8 Use (3.255) to derive E0 for the simple cubic lattice, the body-centered cubic 
lattice, and the face-centered cubic lattice. 

3.9 Use (3.256) to derive the density of states for free electrons. Show that your 
results check (3.164). 

3.10 For the one-dimensional potential well shown in Fig. 3.22 discuss either 
mathematically or physically the behavior of the low-lying energy levels as 
a function of V0, b, and a. Do you see any analogies to band structure? 

3.11 How does soft X-ray emission differ from the more ordinary type of X-ray 
emission? 

3.12 Suppose the first Brillouin zone of a two-dimensional crystal is as shown in 
Fig. 3.23 (the shaded portion). Suppose that the surfaces of constant energy 
are either circles or pieces of circles as shown. Suppose also that where k is 
on a sphere or a spherical piece that E = (ћ2/2m)k2. With all of these 
assumptions, compute the density of states. 

3.13 Use Fermi–Dirac statistics to evaluate approximately the low-temperature 
specific heat of quasi free electrons in a two-dimensional crystal. 

3.14 For a free-electron gas at absolute zero in one dimension, show the average 
energy per electron is one third of the Fermi energy. 
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Fig. 3.22. A one-dimensional potential well 
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Fig. 3.23. First Brillouin zone and surfaces of constant energy in a simple two-dimensional 
reciprocal lattice 



 

 

4  The Interaction of Electrons and Lattice 
Vibrations 

4.1  Particles and Interactions of Solid-state Physics (B) 

There are, in fact, two classes of types of interactions that are of interest. One type 
involves interactions of the solid with external probes (such as electrons, posi-
trons, neutrons, and photons). Perhaps the prime example of this is the study of 
the structure of a solid by the use of X-rays as discussed in Chap. 1. In this chap-
ter, however, we are more concerned with the other class of interactions; those 
that involve interactions of the elementary energy excitations among themselves. 

So far the only energy excitations that we have discussed are phonons 
(Chap. 2) and electrons (Chap. 3). Thus the kinds of internal interactions that we 
consider at present are electron–phonon, phonon–phonon, and electron–electron. 
There are of course several othe kinds of elementary energy excitations in solids 
and thus there are many other examples of interaction. Several of these will be 
treated in later parts of this book. A summary of most kinds of possible pair wise 
interactions is given in Table 4.1. 

The concept of the “particle” as an entity by itself makes sense only if its life 
time in a given state is fairly long even with the interactions. In fact interactions 
between particles may be of such character as to form new “particles.” Only 
a limited number of these interactions will be important in discussing any given 
experiment. Most of them may be important in discussing all possible experi-
ments. Some of them may not become important until entirely new types of solids 
have been formed. In view of the fact that only a few of these interactions have 
actually been treated in detail, it is easy to believe that the field of solid-state 
physics still has a considerable amount of growing to do. 

We have not yet defined all of the fundamental energy excitations.1 Several of 
the excitations given in Table 4.1 are defined in Table 4.2. Neutrons, positrons, 
and photons, while not solid-state particles, can be used as external probes. For 
some purposes, it may be useful to make the distinctions in terminology that are 
noted in Table 4.3. However, in this book, we hope the meaning of our terms will 
be clear from the context in which they are used. 

                                                           
1 A simplified approach to these ideas is in Patterson [4.33]. See also Mattuck [17, Chap. 1]. 
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Table 4.2. Solid-state particles and related quantities 

Bogolon 
(or Bogoliubov
quasiparticles) 

Elementary energy excitations in a superconductor. Linear combina-
tions of electrons in (+k, +), and holes in (−k, −) states. See Chap. 8. 
The + and − after the ks refer to “up” and “down” spin states. 

Cooper pairs Loosely coupled electrons in the states (+k, +), (−k, −). See Chap. 8. 

Electrons Electrons in a solid can have their masses dressed due to many inter-
actions. The most familiar contribution to their effective mass is due 
to scattering from the periodic static lattice. See Chap. 3. 

Mott–Wannier and 
Frenkel excitons  

The Mott–Wannier excitons are weakly bound electron-hole pairs 
with energy less than the energy gap. Here we can think of the binding 
as hydrogen-like except that the electron–hole attraction is screened 
by the dielectric constant and the mass is the reduced mass of the
effective electron and hole masses. The effective radius of this exciton
is the Bohr radius modified by the dielectric constant and effective
reduced mass of electron and hole. 

Since the static dielectric constant can only have meaning for di-
mensions large compared with atomic dimensions, strongly bound
excitations as in, e.g., molecular crystals are given a different name 
Frenkel excitons. These are small and tightly bound electron–hole 
pairs. We describe Frenkel excitons with a hopping excited state
model. Here we can think of the energy spectrum as like that given by 
tight binding. Excitons may give rise to absorption structure below the 
bandgap. See Chap. 10. 

Helicons Slow, low-frequency (much lower than the cyclotron frequency), 
circularly polarized propagating electromagnetic waves coupled to 
electrons in a metal that is in a uniform magnetic field that is in the
direction of propagation of the electromagnetic waves. The frequency
of helicons is given by (see Chap. 10) 

2

2)(

p

c
H

kc
ω

ωω = . 

Holes Vacant states in a band normally filled with electrons. See Chap. 5. 

Magnon The low-lying collective states of spin systems, found in ferromag-
nets, ferrimagnets, antiferromagnets, canted, and helical spin arrays, 
whose spins are coupled by exchange interactions are called spin
waves. Their quanta are called magnons. One can also say the spin 
waves are fluctuations in density in the spin angular momentum. At
very long wavelength, the magnetostatic interaction can dominate
exchange, and then one speaks of magnetostatic spin waves. The
dispersion relation links the frequency with the reciprocal wavelength,
which typically, for ordinary spin waves, at long wavelengths goes as 
the square of the wave vector for ferromagnets but is linear in the
wave vector for antiferromagnets. The magnetization at low tempera-
tures for ferromagnets can be described by spin-wave excitations that 
reduce it, as given by the famous Bloch T3/2 law. See Chap. 7. 
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Table 4.2. (cont.) 

Neutron Basic neutral constituent of nucleus. Now thought to be a composite
of two down quarks and one up quark whose charge adds to zero.
Very useful as a scattering projectile in studying solids. 

Acoustical phonons Sinusoidal oscillating wave where the adjacent atoms vibrate in phase
with the frequency, vanishing as the wavelength becomes infinite. See
Chap. 2. 

Optical phonons Here the frequency does not vanish when the wavelength become 
infinite and adjacent atoms tend to vibrate out of phase. See Chap. 2. 

Photon Quanta of electromagnetic field. 

Plasmons Quanta of collective longitudinal excitation of an electron gas in
a metal involving sinusoidal oscillations in the density of the electron 
gas. The alkali metals are transparent in the ultraviolet, that is for 
frequencies above the plasma frequency. In semiconductors, the 
plasma edge in absorption can occur in the infrared. Plasmons can be 
observed from the absorption of electrons (which excite the plasmons)
incident on thin metallic films. See Chap. 9. 

Polaritons Waves due to the interaction of transverse optical phonons with trans-
verse electromagnetic waves. Another way to say this is that they are
coupled or mixed transverse electromagnetic and mechanical waves.
There are two branches to these modes. At very low and very high
wave vectors the branches can be identified as photons or phonons but 
in between the modes couple to produce polariton modes. The cou-
pling of modes also produces a gap in frequency through which radia-
tion cannot propagate. The upper and lower frequencies defining the 
gap are related by the Lyddane–Sachs–Teller relation. See Chap. 10. 

Polarons A polaron is an electron in the conduction band (or hole in the valence 
band) together with the surrounding lattice with which it is coupled.
They occur in both insulators and semiconductors. The general idea is 
that an electron moving through a crystal interacts via its charge with
the ions of the lattice. This electron–phonon interaction leads to 
a polarization field that accompanies the electron. In particle lan-
guage, the electron is dressed by the phonons and the combined parti-
cle is called the polaron. When the coupling extends over many lattice
spacings, one speaks of a large polaron. Large polarons are formed in
polar crystals by electrons coulombically interacting with longitudinal 
optical phonons. One thinks of a large polaron as a particle moving in
a band with a somewhat increased effective mass. A small polaron is
localized and hops or tunnels from site to site with larger effective 
mass. An equation for the effective mass of a polaron is: 

6
1

1
polaron α

−
≅ mm , 

where α is the polaron coupling constant. This equation applies both 
to small and large polarons. 
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Table 4.2. (cont.) 

Polarons summary (1) Small polarons: α > 6. These are not band-like. The transport 
mechanism for the charge carrier is that of hopping. The electron 
associated with a small polaron spends most of its time near a particu-
lar ion. 
(2) Large polarons: 1 < α < 6. These are band-like but their mobility is 
low. See Chap. 4. 

Positron The antiparticle of an electron with positive charge. 

Proton A basic constituent of the nucleus thought to be a composite of two up 
and one down quarks whose charge total equals the negative of the
charge on the electron. Protons and neutrons together form the nuclei 
of solids. 

Table 4.3. Distinctions that are sometimes made between solid-state quasi particles (or 
“particles”) 

1. Landau quasi 
particles 

Quasi electrons interact weakly and have a long lifetime provided
their energies are near the Fermi energy. The Landau quasi electrons
stand in one-to-one relation to the real electrons, where a real electron 
is a free electron in its measured state; i.e. the real electron is already
“dressed” (see below for a partial definition) due to its interaction 
with virtual photons (in the sense of quantum electrodynamics), but it 
is not dressed in the sense of interactions of interest to solid-state 
physics. The term Fermi liquid is often applied to an electron gas in 
which correlations are strong, such as in a simple metal. The normal 
liquid, which is what is usually considered, means as the interaction is
turned on adiabatically and forms the one-to-one correspondence, that 
there are no bound states formed. Superconducting electrons are not
a Fermi liquid. 

2. Fundamental 
energy excita-
tions from 
ground state of 
a solid 

Quasi particles (e.g. electrons): These may be “dressed” electrons
where the “dressing” is caused by mutual electron–electron interac-
tion or by the interaction of the electrons with other “particles.” The
dressed electron is the original electron surrounded by a “cloud” of
other particles with which it is interacting and thus it may have
a different effective mass from the real electron. The effective interac-
tion between quasi electrons may be much less than the actual interac-
tion between real electrons. The effective interaction between quasi
electrons (or quasi holes) usually means their lifetime is short (in 
other words, the quasi electron picture is not a good description)
unless their energies are near the Fermi energy and so if the quasi
electron picture is to make sense, there must be many fewer quasi
electrons than real electrons. Note that the term quasi electron as used
here corresponds to a Landau quasi electron. 

 



218      4 The Interaction of Electrons and Lattice Vibrations 

 

Table 4.3. (cont.) 

2. (cont.) Collective excitations (e.g. phonons, magnons, or plasmons): These
may also be dressed due to their interaction with other “particles.” In
this book these are also called quasi particles but this practice is not
followed everywhere. Note that collective excitations do not resemble
a real particle because they involve wave-like motion of all particles in
the system considered. 

3. Excitons and 
bogolons 

Note that excitons and bogolons do not correspond either to a simple
quasi particle (as discussed above) or to a collective excitation. How-
ever, in this book we will also call these quasi particles or “particles.” 

4. Goldstone 
boson 

Quanta of long-wavelength and low-frequency modes associated with
conservation laws and broken symmetry. The existence of broken
symmetry implies this mode. Broken symmetry (see Sect. 7.2.6)
means quantum eigenstates with lower symmetry than the underlying
Hamiltonian. Phonons and magnons are examples. 

Once we know something about the interactions, the question arises as to what 
to do with them. A somewhat oversimplified viewpoint is that all solid-state prop-
erties can be discussed in terms of fundamental energy excitations and their inter-
actions. Certainly, the interactions are the dominating feature of most transport 
processes. Thus we would like to know how to use the properties of the interac-
tions to evaluate the various transport coefficients. One way (perhaps the most 
practical way) to do this is by the use of the Boltzmann equation. Thus in this 
chapter we will discuss the interactions, the Boltzmann equation, how the interac-
tions fit into the Boltzmann equation, and how the solutions of the Boltzmann 
equation can be used to calculate transport coefficients. Typical transport coeffi-
cients that will be discussed are those for electrical and thermal conductivity. 

The Boltzmann equation itself is not very rigorous, at least in the situations 
where it will be applied in this chapter, but it does yield some practical results that 
are helpful in interpreting experiments. In general, the development in this whole 
chapter will not be very rigorous. Many ideas are presented and the main aim will 
be to get the ideas across. If we treat any interaction with great care, and if we use 
the interaction to calculate a transport property, we will usually find that we are 
engaged in a sizeable research project. 

In discussing the rigor of the Boltzmann equation, an attempt will be made to 
show how its predictions can be true, but no attempt will be made to discover the 
minimum number of assumptions that are necessary so that the predictions made 
by use of the Boltzmann equation must be true. 

It should come as no surprise that the results in this chapter will not be rigor-
ous. The systems considered are almost as complicated as they can be: they are 
interacting many-body systems, and nonequilibrium statistical properties are the 
properties of interest. Low-order perturbation theory will be used to discuss the 
interactions in the many-body system. An essentially classical technique (the 
Boltzmann equation) will be used to derive the statistical properties. No precise 
statement of the errors introduced by the approximations can be given. We start 
with the phonon–phonon interaction. 
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4.2  The Phonon–Phonon Interaction (B) 

The mathematics is not always easy but we can see physically why phonons scat-
ter phonons. Wave-like motions propagate through a periodic lattice without scat-
tering only if there are no distortions from periodicity. One phonon in a lattice 
distorts the lattice from periodicity and hence scatters another phonon. This view 
is a little oversimplified because it is essential to have anharmonic terms in the 
lattice potential in order for phonon–phonon scattering to occur. These cause the 
first phonon to modify the original periodicity in the elastic properties. 

4.2.1  Anharmonic Terms in the Hamiltonian (B) 

From the Golden rule of perturbation theory (see for example, Appendix E), the 
basic quantity that determines the transition probability from one phonon state (|i〉) 
to another (|f 〉) is the matrix element |〈i|H1|f 〉|2, where H 1 is that part of the Hamil-
tonian that causes phonon–phonon interactions. 

For phonon–phonon interactions, the perturbing Hamiltonian H 1 is the part 
containing the cubic (and higher if necessary) anharmonic terms. 
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where xα is the αth component of vector x and U is determined by Taylor’s theorem, 
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and the V is the potential energy of the atoms as a function of their position. In 
practice, we generally do not try to calculate the U from (4.2) but we carry them 
along as parameters to be determined from experiment. 

As usual, the mathematics is easier to do if the Hamiltonian is expressed in 
terms of annihilation and creation operators. Thus it is useful to work toward this 
end by starting with the transformation (2.190). We find, 
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In (4.3) it is convenient to make the substitutions l′ = l + m′, and l″ = l + m″: 
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where 

 γβα ,,
,,,,, bqbqbq ′′′′′′D  

could be expressed in terms of the U if necessary, but its fundamental property is 
that 

 )(,,
,,,,, lbqbqbq fD ≠′′′′′′

γβα , (4.5) 

because there is no preferred lattice point. 
We obtain 
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In an annihilation and creation operator representation, the old unperturbed 
Hamiltonian was diagonal and of the form 
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The transformation that did this was (see Problem 2.22) 
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Applying the same transformation on the perturbing part of Hamiltonian, we find 
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where 

 )( ,,
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γβα
bqbqbqqqq ′′′′′′′′′′′′ = DfM ppp , (4.10) 

i.e. it could be expressed in terms of the D if necessary. 

4.2.2  Normal and Umklapp Processes (B) 

Despite the apparent complexity of (4.9) and (4.10), they are in a transparent 
form. The essential thing is to find out what types of interaction processes are 
allowed by cubic anharmonic terms. Within the framework of first-order time-
dependent perturbation theory (the Golden rule) this question can be answered. 
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In the first place, the only real (or direct) processes allowed are those that con-
serve energy: 

 total
final

total
initial EE = . (4.11) 

In the second place, in order for the process to proceed, the Kronecker delta 
function in (4.9) says that there must be the following relation among wave vec-
tors: 

 nGqqq =′′+′+ . (4.12) 

Within the limitations imposed by the constraints (4.11) and (4.12), the prod-
ucts of annihilation and creation operators that occur in (4.9) indicate the types of 
interactions that can take place. Of course, it is necessary to compute matrix ele-
ments (as required by the Golden rule) of (4.9) in order to assure oneself that the 
process is not only allowed by the conservation conditions, but is microscopically 
probable. In (4.9) a term of the form a†

q ,pa–q′,p′a–q″,p″ occurs. Let us assume all the p 
are the same and thus drop them as subscripts. This term corresponds to a process 
in which phonons in the modes −q′ and −q″ are destroyed, and a phonon in the 
mode q is created. This process can be diagrammatically presented as in Fig. 4.1. 
It is subject to the constraints 

 qqqn ′′−′− +=+′′−+′−= ωωω ===     and     )( Gqqq . 

If Gn = 0, the vectors q, −q′, and −q″ form a closed triangle and we have what is 
called a normal or N-process. If Gn ≠ 0, we have what is called a U or umklapp 
process.2 

 −q ′

−q ″

q

 
Fig. 4.1. Diagrammatic representation of a phonon–phonon interaction 

Umklapp processes are very important in thermal conductivity as will be dis-
cussed later. It is possible to form a very simple picture of umklapp processes. Let 
us consider a two-dimensional reciprocal lattice as shown in Fig. 4.2. If k1 and k2 
together add to a vector in reciprocal space that lies outside the first Brillouin 
zone, then a first Brillouin-zone description of kl + k2, is k3, where kl + k2 = 
k3 − G. If kl and k2 were the incident phonons and k3 the scattered phonon, we 
would call such a process a phonon–phonon umklapp process. From Fig. 4.2 we 

                                                           
2 Things may be a little more complicated, however, as the distinction between normal and 

umklapp may depend on the choice of primitive unit cell in k space [21, p. 502]. 
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see the reason for the name umklapp (which in German means “flop over”). We 
start out with two phonons going in one direction and end up with a phonon going 
in the opposite direction. This picture gives some intuitive understanding of how 
umklapp processes contribute to thermal resistance. Since high temperatures are 
needed to excite high-frequency (high-energy and thus probably large wave vec-
tor) phonons, we see that we should expect more umklapp processes as the tem-
perature is raised. Thus we should expect the thermal conductivity of an insulator 
to drop with increase in temperature. 

So far we have demonstrated that the cubic (and hence higher-order) terms in the 
potential cause the phonon–phonon interactions. There are several directly observ-
able effects of cubic and higher-order terms in the potential. In an insulator in which 
the cubic and higher-order terms were absent, there would be no diffusion of heat. 
This is simply because the carriers of heat are the phonons. The phonons do not 
collide unless there are anharmonic terms, and hence the heat would be carried by 
“phonon radiation.” In this case, the thermal conductivity would be infinite. 

Without anharmonic terms, thermal expansion would not exist (see Sect. 2.3.4). 
Without anharmonic terms, the potential that each atom moved in would be sym-
metric, and so no matter what the amplitude of vibration of the atoms, the average 
position of the atoms would be constant and the lattice would not expand. 

Anharmonic terms are responsible for small (linear in temperature) deviations 
from the classical specific heat at high temperature. We can qualitatively under-
stand this by assuming that there is some energy involved in the interaction proc-
ess. If this is so, then there are ways (in addition to the energy of the phonons) that 
energy can be carried, and so the specific heat is raised. 

The spin–lattice interaction in solids depends on the anharmonic nature of the 
potential. Obviously, the way the location of a spin moves about in a solid will 
have a large effect on the total dynamics of the spin. The details of these interac-
tions are not very easy to sort out. 

More generally we have to consider that the anharmonic terms cause a tempera-
ture dependence of the phonon frequencies and also cause finite phonon lifetimes. 

 

k3
k1 k2

 
Fig. 4.2. Diagram for illustrating an umklapp process 
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We can qualitatively understand the temperature dependence of the phonon frequen-
cies from the fact that they depend on interatomic spacing that changes with tempera-
ture (thermal expansion). The finite phonon lifetimes obviously occur because the 
phonons scatter into different modes and hence no phonon lasts indefinitely in the 
same mode. For further details on phonon–phonon interactions see Ziman [99]. 

4.2.3  Comment on Thermal Conductivity (B) 

In this Section a little more detail will be given to explain the way umklapp proc-
esses play a role in limiting the lattice thermal conductivity. The discussion in this 
Section involves only qualitative reasoning. 

Let us define a phonon current density J by 
 ∑ ′ ′′= p pN,ph  q qqJ , (4.13) 

where Nq,p is the number of phonons in mode (q, p). If this quantity is not equal to 
zero, then we have a phonon flux and hence heat transport by the phonons. 

Now let us consider what the effect of phonon–phonon collisions on Jph would 
be. If we have a phonon–phonon collision in which q2 and q3 disappear and ql 
appears, then the new phonon flux becomes 
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Thus 
 ph321ph JqqqJ +−−=′ . 

For phonon–phonon processes in which q2 and q3 disappear and ql appears, we 
have that 
 nGqqq ++= 321 , 

so that 
 phph JGJ +=′ n . 

Therefore, if there were no umklapp processes the Gn would never appear and 
hence J′ph would always equal Jph. This means that the phonon current density 
would not change; hence the heat flux would not change, and therefore the ther-
mal conductivity would be infinite. 

The contribution of umklapp processes to the thermal conductivity is important 
even at fairly low temperatures. To make a crude estimate, let us suppose that the 
temperature is much lower than the Debye temperature. This means that small q 
are important (in a first Brillouin-zone scheme for acoustic modes) because these 
are the q that are associated with small energy. Since for umklapp processes q + q′ 
+ q″ = Gn, we know that if most of the q are small, then one of the phonons in-
volved in a phonon–phonon interaction must be of the order of Gn, since the wave 
vectors in the interaction process must add up to Gn. 
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By use of Bose statistics with T << θD, we know that the mean number of pho-
nons in mode q is given by 
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1)/exp(

1 kT
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N q
q

q ω
ω

=
=
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= . (4.15) 

Let =ωq be the energy of the phonon with large q, so that we have approximately 

 Dkθω ≅q= , (4.16) 

so that 

 )/exp( TN Dθ−≅q . (4.17) 

The more N̄ qs there are, the greater the possibility of an umklapp process, and 
since umklapp processes cause Jph to change, they must cause a decrease in the 
thermal conductivity. Thus we would expect at least roughly 

 1−∝ KNq , (4.18) 

where K is the thermal conductivity. Combining (4.17) and (4.18), we guess that 
the thermal conductivity of insulators at fairly low temperatures is given approxi-
mately by 

 )/exp( TK Dθ∝ . (4.19) 

More accurate analysis suggests the form should be Tnexp(FθD/T), where F is of 
order 1/2. At very low temperatures, other processes come into play and these will 
be discussed later. At high temperature, K (due to the umklapp) is proportional to 
T−1. Expression (4.19) appears to predict this result, but since we assumed T << θD 
in deriving (4.19), we cannot necessarily believe (4.19) at high T. 

It should be mentioned that there are many other types of phonon–phonon in-
teractions besides the ones mentioned. We could have gone to higher-order terms 
in the Taylor expansion of the potential. A third-order expansion leads to three 
phonon (direct) processes. An N th-order expansion leads to N phonon interac-
tions. Higher-order perturbation theory allows additional processes. For example, 
it is possible to go indirectly from level i to level f via a virtual level k as is illus-
trated in Fig. 4.3. 

 k 

f

i 

 

Fig. 4.3. Indirect i → f transitions via a virtual or short-lived level k 
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There are a great many more things that could be said about phonon–phonon inter-
actions, but at least we should know what phonon–phonon interactions are by now. 

The following statement is by way of summary: Without umklapp processes 
(and impurities and boundaries) there would be no resistance to the flow of pho-
non energy at all temperatures (in an insulator). 

4.3  The Electron–Phonon Interaction 

Physically it is easy to see why lattice vibrations scatter electrons. The lattice 
vibrations distort the lattice periodicity and hence the electrons cannot propagate 
through the lattice without being scattered. 

The treatment of electron–phonon interactions that will be given is somewhat 
similar to the treatment of phonon–phonon interactions. Similar selection rules (or 
constraints) will be found. This is expected. The selection rules arise from conser-
vation laws, and conservation laws arise from the fundamental symmetries of the 
physical system. The selection rules are: (1) energy is conserved, and (2) the total 
wave vector of the system before the scattering process can differ only by a recip-
rocal lattice vector from the total wave vector of the system after the scattering 
process. Again it is necessary to examine matrix elements in order to assure one-
self that the process is microscopically probable as well as possible because it 
satisfies the selection rules. 

The possibility of electron–phonon interactions has been introduced as if one 
should not be surprised by them. It is perhaps worth pointing out that electron–
phonon interactions indicate a breakdown of the Born–Oppenheimer approxima-
tion. This is all right though. We assume that the Born–Oppenheimer approxima-
tion is the zeroth-order solution and that the corrections to it can be taken into 
account by first-order perturbation theory. It is almost impossible to rigorously 
justify this procedure. In order to treat the interactions adequately, we should go 
back and insert the terms that were dropped in deriving the Born–Oppenheimer 
approximation. It appears to be more practical to find a possible form for the in-
teraction by phenomenological arguments. For further details on electron–phonon 
interactions than will be discussed in this book see Ziman [99]. 

4.3.1  Form of the Hamiltonian (B) 

Whatever the form of the interaction, we know that it vanishes when there are no 
atomic displacements. For small displacements, the interaction should be linear in 
the displacements. Thus we write the phenomenological interaction part of the 
Hamiltonian as 
 ∑ == bl xxbl blb,l rx, 0 alle,ep ,)]([ U∇⋅H , (4.20) 

where re represents the electronic coordinates. 
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As we will see later, the Boltzmann equation will require that we know the 
transition probability per unit time. The transition probability can be evaluated 
from the Golden rule of time-dependent first-order perturbation theory. Basically, 
the Golden rule requires that we evaluate 〈f|Hep|i〉, where |i〉 and 〈f| are formal ways 
of representing the initial and final states for both electron and phonon unper-
turbed states. 

As usual it is convenient to write our expressions in terms of creation and de-
struction operators. The appropriate substitutions are the same as the ones that 
were previously used: 
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If we assume that the electrons can be treated by a one-electron approximation, 
and that only harmonic terms are important for the lattice potential, a typical ma-
trix element that will have to be evaluated is 

 〉−〈≡ ∫ ′
∗

′ 1|d)()(| ,ep,, pp nnT qkkqkk rrr ψψ H , (4.22) 

where |nq,p〉 are phonon eigenkets and ψk(r) are electron eigenfunctions. The pho-
non matrix elements can be evaluated by the usual rules (given below): 
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Combining (4.20), (4.21), (4.22), and (4.23), we find 
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Equation (4.24) can be simplified. In order to see how, let us consider a simple 
problem. Let 
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where 

 )(e)( i xfalxf lk=+ , (4.26) 

l is an integer, and Ul(x) is in general not a periodic function of x. In particular, let 
us suppose 
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where 

 ∑ −−= l ll dxKxxU ])(exp[),( 2 , (4.28) 

and 

 ll xld += . (4.29) 

U(x, xl) is periodic if xl = 0. Combining (4.27) and (4.28), we have 
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Note that Ul(x) = F(x − l) is a localized function. 
Therefore we can write 
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In (4.31), let us write x′ = x − l or x = x′ + l. Then we must have 
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Using (4.26), we can write (4.32) as 
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If we are using periodic boundary conditions, then all of our functions must be 
periodic outside the basic interval −L to +L. From this it follows that (4.33) can be 
written as 
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The integral in (4.34) is independent of l. Also we shall suppose F(x) is very small 
for x outside the basic one-dimensional unit cell Ω. From this it follows that we 
can write G as 

 ( )( )∑∫ −−′′′≅ l
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A similar argument in three dimensions says that 
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Using the above, and the known delta function property of ∑l eik·l, we find that 
(4.24) becomes 
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Equation (4.36) gives us the usual but very important selection rule on the 
wave vector. The selection rule says that for all allowed electron–phonon proc-
esses; we must have 

 nGqkk =−−′ . (4.37) 

If Gn ≠ 0, then we have electron–phonon umklapp processes. Otherwise, we say 
we have normal processes. This distinction is not rigorous because it depends on 
whether or not the first Brillouin zone is consistently used. 

The Golden rule also gives us a selection rule that represents energy conserva-
tion 

 pEE ,qkk ω=+=′ . (4.38) 

Since typical phonon energies are much less than electron energies, it is usually 
acceptable to neglect =ωq,p in (4.38). Thus while technically speaking the electron 
scattering is inelastic, for practical purposes it is often elastic.3 The matrix element 
considered was for the process of emission. A diagrammatic representation of this 
process is given in Fig. 4.4. There is a similar matrix element for phonon absorp-
tion, as represented in Fig. 4.5. One should remember that these processes came 
out of first-order perturbation theory. Higher-order perturbation theory would 
allow more complicated processes. 

It is interesting that the selection rules for inelastic neutron scattering are the 
same as the rules for inelastic electron scattering. However, when thermal neutrons 
are scattered, =ωq,p is not negligible. The rules (4.37) and (4.38) are sufficient to 
map out the dispersion relations for lattice vibration. Ek, Ek′, k, and k′ are easily 
measured for the neutrons, and hence (4.37) and (4.38) determine ωq,p versus q for 
phonons. In the hands of Brockhouse et al [4.5] this technique of slow neutron 
diffraction or inelastic neutron diffraction has developed into a very powerful mod-
ern research tool. It has also been used to determine dispersion relations for 
magnons. It is also of interest that tunneling experiments can sometimes be used to 
determine the phonon density of states.4 

                                                           
3 This may not be true when electrons are scattered by polar optical modes. 
4 See McMillan and Rowell [4.29]. 
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Fig. 4.4. Phonon emission in an electron–phonon interaction 
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Fig. 4.5. Phonon absorption in an electron–phonon interaction 

4.3.2  Rigid-Ion Approximation (B) 

It is natural to wonder if all modes of lattice vibration are equally effective in the 
scattering of electrons. It is true that, in general, some modes are much more ef-
fective in scattering electrons than other modes. For example, it is usually possible 
to neglect optic mode scattering of electrons. This is because in optic modes the 
adjacent atoms tend to vibrate in opposite directions, and so the net effect of the 
vibrations tends to be very small due to cancellation. However, if the ions are 
charged, then the optic modes are polar modes and their effect on electron scatter-
ing is by no means negligible. In the discussion below, only one atom per unit cell 
is assumed. This assumption eliminates the possibility of optic modes. The polari-
zation vectors are now real. 

In what follows, an approximation called the rigid-ion approximation will be 
used to discuss differences in scattering between transverse and longitudinal 
acoustic modes. It appears that in some approximations, transverse phonons do 
not scatter electrons. However, this rule is only very approximate. 
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So far we have derived that the matrix element governing the scattering is 
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where 
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Equation (4.40) is not easily calculated, but it is the purpose of the rigid-ion 
approximation to make some comments about it anyway. The rigid-ion approxi-
mation assumes that the potential the electrons feel depends only on the vectors 
connecting the ions and the electron. We also assume that the total potential is the 
simple additive sum of the potentials from each ion. We thus assume that the 
potential from each ion is carried along with the ion and is undistorted by the 
motion of the ion. This is clearly an oversimplification, but it seems to have some 
degree of applicability, at least for simple metals. The rigid-ion approximation 
therefore says that the potential that the electron moves in is given by 

 )()( ll xrr ′′ −= ∑ avU , (4.41) 

where va(r − xl′) refers to the potential energy of the electron in the field of the ion 
whose equilibrium position is at l′. The va is the cell potential, which is used in the 
Wigner–Seitz approximation, so that we have inside a cell, 
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The question is, how can we use these two results to evaluate the needed integrals 
in (4.40)? By (4.41) we see that 

 aax vvU ∇∇∇ −≡−= rl . (4.43) 

What we need in (4.40) is thus an expression for ∇va. That is, 
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We can get an expression for the integrand in (4.44) by taking the gradient of 
(4.42) and multiplying by ψk

* . We obtain 
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Several transformations are needed before this gets us to a usable approximation: 
We can always use Bloch’s theorem ψk′ = eik′·r uk′(r) to replace ∇ψk′ by 
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We will also have in mind that any scattering caused by the motion of the rigid 
ions leads to only very small changes in the energy of the electrons, so that we 
will approximate Ek by Ek′ wherever needed. We therefore obtain from (4.45), 
(4.46), and (4.42) 
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We can also write  
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since we get a cancellation in going from the second step to the last step. This 
means by (4.44), (4.47), and the above that we can write 
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We will assume we are using a Wigner–Seitz approximation in which the 
Wigner–Seitz cells are spheres of radius r0. The original integrals in Hq

k ,
, p

k ′ in-
volved only integrals over the Wigner–Seitz cell (because ∇va vanishes very far 
from the cell for va). Now uk′ ≅ ψk′ = 0 in the Wigner–Seitz approximation, and also 
in this approximation we know (∇ψk′ = 0)r=r0 = 0. Since ∇ψ0 = r̂ (∂ψ0 / ∂r), by the 
above reasoning we can now write 
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Consistent with the Wigner–Seitz approximation, we will further assume that va is 
spherically symmetric and that 
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where Ω is the volume of the Wigner–Seitz cell. We assume further that the main 
contribution to the gradient in (4.50) comes from the exponentials, which means 
that we can write 

 kkkk kk ′
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Finally, we obtain 
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Neglecting umklapp processes, we have k′ − k = q so 

 qeq
kk

q ⋅ppH ,
,
, ∝′ . 

Since for transverse phonons, eq,p is perpendicular to q, eq,p · q = 0 and we get no 
scattering. We have the very approximate rule that transverse phonons do not 
scatter electrons. However, we should review all of the approximations that went 
into this result. By doing this, we can fully appreciate that the result is only very 
approximate [99]. 

4.3.3  The Polaron as a Prototype Quasiparticle (A)5 

Introduction (A) 

We look at a different kind of electron–phonon interaction in this section. Landau 
suggested that an F-center could be understood as a self-trapped electron in a polar 
crystal. Although this idea did not explain the F-center, it did give rise to the con-
ception of polarons. Polarons occur when an electron polarizes the surrounding 
media, and this polarization reacts back on the electron and lowers the energy. The 
polarization field moves with the electron and the whole object is called a polaron, 
which will have an effective mass generally much greater than the electrons. Pola-
rons also have different mobilities from electrons and this is one way to infer their 
existence. Much of the basic work on polarons has been done by Fröhlich. He ap-
proached polarons by considering electron–phonon coupling. His ideas about elec-
tron–phonon coupling also helped lead eventually to a theory of superconductivity, 
but he did not arrive at the correct treatment of the pairing interaction for supercon-
ductivity. Relatively simple perturbation theory does not work there. 

There are large polarons (sometimes called Fröhlich polarons) where the lattice 
distortion is over many sites and small ones that are very localized (some people 
call these Holstein polarons). Polarons can occur in polar semiconductors or in 
polar insulators due to electrons in the conduction band or holes in the valence 
band. Only electrons will be considered here and the treatment will be limited to 
Fröhlich polarons. Then the polarization can be treated on a continuum basis. 

                                                           
5 See, e.g., [4.26]. 
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Once the effective Hamiltonian for electrons interact with the polarized lattice, 
perturbation theory can be used for the large-polaron case and one gets in a rela-
tively simple manner the enhanced mass (beyond the Bloch effective mass) due to 
the polarization interaction with the electron. Apparently, the polaron was the first 
solid-state quasi particle treated by field theory, and its consideration has the advan-
tage over relativistic field theories that there is no divergence for the self-energy. In 
fact, the polaron’s main use may be as an academic example of a quasi particle that 
can be easily understood. From the field theoretic viewpoint, the polarization is 
viewed as a cloud of virtual phonons around the electron. The coupling constant is: 
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The K(0) and K(∞) are the static and high-frequency dielectric constants, m is the 
Bloch effective mass of the electron, and ωL is the long-wavelength longitudinal 
optic frequency. One can show that the total electron effective mass is the Bloch 
effective mass over the quantity 1 – αc/6. The coupling constant αc is analogous to 
the fine structure coupling constant e2/=c used in a quantum-electrodynamics 
calculation of the electron–photon interaction. 

The Polarization (A) 

We first want to determine the electron–phonon interaction. The only coupling 
that we need to consider is for the longitudinal optical (LO) phonons, as they have 
a large electric field that interacts strongly with the electrons. We need to calculate 
the corresponding polarization of the unit cell due to the LO phonons. We will 
find this relates to the static and optical dielectric constants. 

We consider a diatomic lattice of ions with charges ±e. We examine the optical 
mode of vibrations with very long wavelengths so that the ions in neighboring unit 
cells vibrate in unison. Let the masses of the ions be m± and if k is the effective 
spring constant and Ef is the effective electric field acting on the ions we have 
(e > 0) 
 f)( Errr ekm +−−= −+++ �� , (4.53a) 

 f)( Errr ekm −−+= −+−− �� , (4.53b) 

where r± is the displacement of the ± ions in the optic mode (related equations are 
more generally discussed in Sect. 10.10). 

Subtracting, and defining the reduced mass in the usual way (μ–1 = m+
–1 + m–

–1), 
we have 

 fErr ek +−=��μ , (4.54a) 

where 

 −+ −= rrr . (4.54b) 
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We assume Ef in the solid is given by the Lorentz field (derived in Chap. 9) 

 
0

f 3ε
PEE += , (4.55) 

where ε0 is the permittivity of free space. 
The polarization P is the dipole moment per unit volume. So if there are N unit 

cells in a volume V, and if the ± ions have polarizability of α± so for both ions 
α = α+ + α–, then 
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Inserting Ef into this expression and solving for P we find: 
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Putting Ef into Eqs. (4.54a) and (4.56) and using (4.57) for P, we find 

 Err ba +=�� , (4.58a) 

 ErP dc += , (4.58b) 

where 
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and a and d can be similarly evaluated if needed. Note that 

 c
N
Vb
μ

= . (4.60) 

It is also convenient to relate these coefficients to the static and high-frequency 
dielectric constants K(0) and K(∞). In general 

 PEED +== 00 εεK , (4.61) 

so 

 EP 0)1( ε−= K . (4.62) 

For the static case r̈  = 0 and 

 Er
a
b−= . (4.63) 
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Thus 
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a
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For the high-frequency or optic case r̈  → ∞, and r → 0 because the ions cannot 
follow the high-frequency fields so 
 EEP 0]1)([ ε−∞== Kd . (4.65) 

From the above 
 0]1)([ ε−∞= Kd , (4.66) 

 0]1)0([ ε−=− K
a
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We can use the above to get an expression for the polarization, which in turn can 
be used to determine the electron–phonon interaction. First we need to evaluate P. 

We work out the polarization for the longitudinal optic mode, as that is all that 
is needed. Let 
 LT rrr += , (4.68) 

where T and L denote transverse and longitudinal. Since we assume 
 constant a ,)](iexp[T vrqvr tω+⋅= , (4.69a) 

then 
 0i TT =⋅=⋅ rqr∇ , (4.69b) 

by definition since q is the direction of motion of the vibrational wave and is per-
pendicular to rT. There is no free charge to consider, so 
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using (4.69b). This gives as a solution for E 
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If 

 )iexp()0( LLL tωrr = , (4.73a) 
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and 

 )iexp()0( TTT tωrr = , (4.73b) 

then 
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Thus by Eqs. (4.58a) and (4.71) 
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Also, using (4.71) and (4.58a) 

 TT rr a=�� , (4.76) 

so 
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Using Eqs. (4.66) and (4.67) 
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and so by (4.74a), (4.75) and (4.77) 
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which is known as the LST (for Lyddane–Sachs–Teller) equation. See also Born 
and Huang [46 p. 87]. This will be further discussed in Chap. 9. Continuing, by 
(4.66), 

 00 )( εε ∞=+ Kd , (4.80) 

and by (4.67) 
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from which we determine by (4.60), (4.77), (4.78), (4.80), and (4.81) 
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Using (4.72) and the LST equation we find 
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we can write a more convenient expression for P. Note we can think of K̄    as the 
effective dielectric constant for the ion displacements. The quantity r0 is called the 
radius of the polaron. A simple argument can be given to see why this is a good 
interpretation. The uncertainty in the energy of the electron due to emission or 
absorption of virtual phonons is 

 LωΔ ==E , (4.87) 

and if 
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The quantity αc is called the coupling constant and it can have values considerably 
less than 1 for for direct band gap semiconductors or greater than 1 for insulators. 
Using the above definitions: 
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The Electron–Phonon Interaction due to the Polarization (A) 

In the continuum approximation appropriate for large polarons, we can write the 
electron–phonon interaction as coming from dipole moments interacting with the 
gradient of the potential due to the electron (i.e. a dipole moment dotted with an 
electric field, e > 0) so 
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Since P = ArL and we have determined A, we need to write an expression for rL. 
In the usual way we can express rL at lattice position Rn in terms of an expan-

sion in the normal modes for LO phonons (see Sect. 2.3.2): 
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The polarization vectors are normalized so 

 122 =+ −+ ee . (4.93) 

For long-wavelength LO modes 
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Then we find a solution for the LO modes as 

 )(ˆi)( qeqe
+

+ =
m
μ , (4.95a) 

 )(ˆi)( qeqe
−

− −=
m
μ , (4.95b) 

where 

 ∞→= q
q

 as)(ˆ qqe . 

Note the i allows us to satisfy 
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as required. Thus 
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or in the continuum approximation 
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Following the usual procedure: 
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(compare with Eqs. (2.140), (2.141)). Substituting and making a change in dummy 
summation variable: 
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Using the identity from Madelung [4.26], 
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we find 
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Energy and Effective Mass (A) 

We consider only processes in which the polarizable medium is at absolute zero, 
and for which the electron does not have enough energy to create real optical 
phonons. We consider only the process described in Fig. 4.6. That is we consider 
the modification of self-energy of the electron due to virtual phonons. In perturba-
tion theory we have as ground state |k, 0q〉 with energy 
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and no phonons. For the excited (virtual) state we have one phonon, |k – q, 1q〉. 
By ordinary Rayleigh-Schrödinger perturbation theory, the perturbed energy of 
the ground state to second order is: 
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Fig. 4.6. Self-energy Feynman diagram (for interaction of electron and virtual phonon) 

Since 
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we have 

 2

2
H

20
2

L
2

ep
14)(0,1,

q
C

qV
r c ≡=− παω=kqk H , (4.109) 

where 

 
V

rC c
0

2
L

2
H

4)( παω== . (4.110) 



4.3 The Electron–Phonon Interaction      241 

 

Replacing 
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For small k we can show (see Problem 4.5) 
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Thus the self-energy is increased by the interaction of the cloud of virtual phonons 
surrounding the electrons. 

Experiments and Numerical Results (A) 

A discussion of experimental results for large polarons can be found in the paper 
by Appel [4.2, pp. 261-276]. Appel (pp. 366-391) also gives experimental results 
for small polarons. Polarons are real. However, there is not the kind of compre-
hensive comparisons of theory and experiment that one might desire. Cyclotron 
resonance and polaron mobility experiments are common experiments cited. Dif-
ficulties abound, however. For example, to determine m** accurately, m* is 
needed. Of course m* depends on the band structure that then must be accurately 
known. Crystal purity is an important but limiting consideration in many experi-
ments. The chapter by F. C. Brown in the book edited by Kuper and Whitfield 
[4.23] also reviews rather thoroughly the experimental situation. Some typical 
values for the coupling constant αc (from Appel), are given below. Experimental 
estimates of αc are also given by Mahan [4.27] on p. 508. 

Table 4.4. Polaron coupling constant 

Material αc 

KBr 3.70 
GaAs 0.031 
InSb 0.015 
CdS 0.65 

CdTe 0.39 
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4.4  Brief Comments on Electron–Electron Interactions 
(B) 

A few comments on electron–electron interactions have already been made in 
Chap. 3 (Sects. 3.1.4 and 3.2.2) and in the introduction to this chapter. Chapter 3 
discussed in some detail the density functional technique (DFT), in which the 
density function plays a central role for accounting for effects of electron–electron 
interactions. Kohn [4.20] has given a nice summary of the limitation of this 
model. The DFT has become the traditional way nowadays for calculating the 
electronic structure of crystalline (and to some extent other types of) condensed 
matter. For actual electronic densities of interest in metals it has always been dif-
ficult to treat electron–electron interactions. We give below earlier results that 
have been obtained for high and low densities. 

Results, which include correlations or the effect of electron–electron interac-
tions, are available for a uniform electron gas with a uniform positive background 
(jellium). The results given below are in units of Rydberg (R∞), see Appendix A. 
If ρ is the average electron density, 
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is the average distance between electrons. For high density (rs << 1), the theory of 
Gell-mann and Bruckner gives for the energy per electron 
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For low densities (rs >> 1) the ideas of Wigner can be extended to give 
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In the intermediate regime of metallic densities, the following expression is ap-
proximately true: 
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for 1.8 ≤ rs ≤ 5.5. See Katsnelson et al [4.16]. This book is also excellent for DFT. 
The best techniques for treating electrons in interaction that has been discussed 

in this book are the Hartree and Hartree–Fock approximation and especially the 
density functional method. As already mentioned, the Hartree–Fock method can 
give wrong results because it neglects the correlations between electrons with 
antiparallel spins. In fact, the correlation energy of a system is often defined as the 
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difference between the exact energy (less the relativistic corrections if necessary) 
and the Hartree–Fock energy. 

Even if we limit ourselves to techniques derivable from the variational princi-
ple, we can calculate the correlation energy at least in principle. All we have to do 
is to use a better trial wave function than a single Slater determinant. One way to 
do this is to use a linear combination of several Slater determinants (the method of 
superposition of configurations). The other method is to include interelectronic 
coordinates r12 = |r1 − r2| in our trial wave function. In both methods there would 
be several independent functions weighted with coefficients to be determined by 
the variational principle. Both of these techniques are practical for atoms and 
molecules with a limited number of electrons. Both become much too complex 
when applied to solids. In solids, cleverer techniques have to be employed. Mat-
tuck [4.28] will introduce you to some of these clever ideas and do it in a simple, 
understandable way, and density functional techniques (see Chap. 3) have become 
very useful, at least for ground-state properties. 

It is well to keep in mind that most calculations of electronic properties in real 
solids have been done in some sort of one-electron approximation and they treat 
electron–electron interactions only approximately. There is no reason to suppose 
that electron correlations do not cause many types of new phenomena. For exam-
ple, Mott has proposed that if we could bring metallic atoms slowly together to 
form a solid there would still be a sudden (so-called Mott) transition to the con-
ducting or metallic state at a given distance between the atoms.6 This sudden tran-
sition would be caused by electron–electron interactions and is to be contrasted 
with the older idea of conduction at all interatomic separations. The Mott view 
differs from the Bloch view that states that any material with well separated en-
ergy bands that are either filled or empty should be an insulator while any material 
with only partly filled bands (say about half-filled) should be a metal. Consider, 
for example, a hypothetical sodium lattice with N atoms in which the Na atoms 
are 1 meter apart. Let us consider the electrons that are in the outer unfilled shells. 
The Bloch theory says to put these electrons into the N lowest states in the con-
duction band. This leaves N higher states in the conduction band for conduction, 
and the lattice (even with the sodium atoms well separated) is a metal. This de-
scription allows two electrons with opposite spin to be on the same atom without 
taking into account the resulting increase in energy due to Coulomb repulsion. A 
better description would be to place just one electron on each atom. Now, the 
Coulomb potential energy is lower, but since we are using localized states, the 
kinetic energy is higher. For separations of 1 meter, the lowering of potential 
energy must dominate. In the better description as provided by the localized 
model, conduction takes place only by electrons hopping onto atoms that already 
have an outer electron. This requires considerable energy and so we expect the 
material to behave as an insulator at large atomic separations. Since the Bloch 
model so often works, we expect (usually) that the kinetic energy term dominates 
at actual interatomic spacing. Mott predicted that the transition to a metal from an 
insulator as the interatomic spacing is varied (in a situation such as we have  
                                                           
6 See Mott [4.31]. 
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described) should be a sudden transition. By now, many examples are known, 
NiO was one of the first examples of “Mott–Hubbard” insulators – following 
current usage. Anderson has predicted another kind of metal–insulator transition 
due to disorder.6 Anderson’s ideas are also discussed in Sect. 12.9. 

Kohn has suggested another effect that may be due to electron–electron interac-
tions. These interactions cause singularities in the dielectric constant (see, e.g., 
(9.167)) as a function of wave vector that can be picked up in the dispersion rela-
tion of lattice vibrations. This Kohn effect appears to offer a means of mapping 
out the Fermi surface.7 Electron–electron interactions may also alter our views of 
impurity states.8 We should continue to be hopeful about the possibility of finding 
new effects due to electron–electron interactions.9 

4.5  The Boltzmann Equation and Electrical Conductivity 

4.5.1  Derivation of the Boltzmann Differential Equation (B) 

In this section, the Boltzmann equation for an electron gas will be derived. The 
principle lack of rigor will be our assumption that the electrons are described by 
wave packets made of one-electron Bloch wave packets (Bloch wave packets 
incorporate the effect of the fields due to the lattice ions which by definition 
change rapidly over inter ionic distances). We also assume these wave packets do 
not spread appreciably over times of interest. The external fields and temperatures 
will also be assumed to vary slowly over distances of the order of the lattice spac-
ing. 

Later, we will note that the Boltzmann equation is only relatively simple to 
solve in an iterated first order form when a relaxation time can be defined. The use 
of a relaxation time will further require that the collisions of the electrons with 
phonons (for example) do not appreciably alter their energies, that is that the rele-
vant phonon energies are negligible compared to the electrons energies so that the 
scattering of the electrons may be regarded as elastic. 

We start with the distribution function fkσ(r,t), where the normalization is such 
that 

 3)2(
dd),(

πσ
rkrk tf  

is the number of electrons in dk (= dkxdkydkz) and dr (= dxdydz) at time t with spin 
σ. In equilibrium, with a uniform distribution, fkσ → f k

0
 σ becomes the Fermi–Dirac 

distribution. 

                                                           
7 See [4.19]. See also Sect. 9.5.3. 
8 See Langer and Vosko [4.24]. 
9 See also Sect. 12.8.3 where the half-integral quantum Hall effect is discussed. 
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If no collisions occurred, the r and k coordinates of every electron would 
evolve by the semiclassical equations of motion as will be shown (Sect. 6.1.2). 
That is: 

 
k
k

k ∂
∂= σ

σ
Ev

=
1 , (4.114) 

and 

 extFk =�= , (4.115) 

where F = Fext is the external force. Consider an electron having spin σ at r and k 
and time t started from r – vkσdt, k – Fdt/= at time t – dt. Conservation of the num-
ber of electrons then gives us: 

 ttttttt tttftf dd)/d( dd)dd(dd)( −−− −−= kr,vrkrr, kFkk σσσ = . (4.116) 

Liouville’s theorem then says that the electrons, which move by their equation of 
motion, preserve phase space volume. Thus, if there were no collisions: 
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Scattering due to collisions must be considered, so let 
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be the net change, due to collisions, in the number of electrons ( per dkdr/(2π)3) 
that get to r, k at time t. By expanding to first order in infinitesimals, 
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so 
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If the steady state is assumed, then 

 0=
∂

∂
t

f σk . (4.121) 

Equation (4.120) may be the basic equation we need to solve, but it does us little 
good to write it down unless we can find useful expressions for Q. Evaluation of 
Q is by a detailed consideration of the scattering process. For many cases Q is 
determined by the scattering matrices as was discussed in Sects. 4.1 and 4.2. Even 
after Q is so determined, it is by no means a trivial problem to solve the Boltz-
mann integrodifferential (as it turns out to be) equation. 
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4.5.2  Motivation for Solving the Boltzmann Differential Equation (B) 

Before we begin discussing the Q details, it is worthwhile to give a little motivation 
for solving the Boltzmann differential equation. We will show how two important 
quantities can be calculated once the solution to the Boltzmann equation is known. It 
is also very useful to approximate Q by a phenomenological argument and then 
obtain solutions to (4.120). Both of these points will be discussed before we get into 
the rather serious problems that arise when we try to calculate Q from first princi-
ples. 

Solutions to (4.120) allow us, from fkσ, to obtain the electric current density J, 
and the electronic flux of heat energy H. By definition of the distribution function, 
these two important quantities are given by 

 ∑ ∫ −= σ σσ π 3)2(
d)( kvJ kk fe , (4.122) 

 ∑ ∫= σ σσσ π 3)2(
dkvH kkk fE . (4.123) 

Electrical conductivity σ and thermal conductivity κ 10 are defined by the relations 

 EJ σ= , (4.124) 

 T∇κ−=H  (4.125) 

(with a few additional restrictions as will be discussed, see, e.g., Sect. 4.6 and 
Table 4.5). 

As long as we are this close, it is worthwhile to sketch the type of experimental 
results that are obtained for the transport coefficients κ and σ. In particular, it is 
useful to understand the particular form of the temperature dependences that are 
given in Fig. 4.7, Fig. 4.8, and Fig. 4.9. See Problems 4.2, 4.3, and 4.4. 
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Fig. 4.7. The thermal conductivity of  
a good metal (e.g. Na as a function of 
temperature) 
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Fig. 4.8. The electrical conductivity of  
a good metal (e.g. Na as a function of 
temperature) 

                                                           
10 See Table 4.5 for a more precise statement about what is held constant. 



4.5 The Boltzmann Equation and Electrical Conductivity      247 

 

 

Tneβ/T

1/T
T

T3 

K 

 
Fig. 4.9. The thermal conductivity of an insulator as a function of temperature, β ≅
θD/2 

4.5.3  Scattering Processes and Q Details (B) 

We now discuss the Q details. A typical situation in which we are interested is 
how to calculate the electron–phonon interaction and thus calculate the electrical 
resistivity. To begin with we consider how 

 ),,( tQ
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c
krk =
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∂ σ  

is determined by the interactions. Let Pkσ, k′σ′ be the probability per unit time to 
scatter from the state k′σ′ to kσ. This is typically evaluated from the Golden rule of 
time-dependent perturbation theory (see Appendix E): 
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The probability that there is an electron at r, k, σ available to be scattered is fkσ and 
(1 – fk′σ′) is the probability that k′σ′ can accept an electron (because it is empty). 

For scattering out of kσ we have 
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By a similar argument for scattering into kσ, we have 
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Combining these two we have an expression for Q: 
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This rate equation for fkσ is a type of Master equation [11, p. 190]. At equilibrium, 
the above must yield zero and we have the principle of detailed balance. 
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Using the principle of detailed balance, we can write the rate equation as 
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We now define a quantity φkσ such that 
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where 
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with β = 1/kBT and f k
0
 σ is the Fermi function. 

Noting that 
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we can show to linear order in φkσ that 
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The Boltzmann transport equation can then be written in the form 
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Since the sums over k′ will be replaced by an integral, this is an integrodifferential 
equation. 

Let us assume that in the Boltzmann equation, on the left-hand side, that there 
are small fields and temperature gradients so that fkσ can be replaced by its equilib-
rium value. Further, we will assume that f k

0
 σ characterizes local equilibrium in 

such a way that the spatial variation of f k
0
 σ arises from the temperature and chemi-

cal potential (μ). Thus 
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We also use 
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and assume an external electric field E so F = –eE. (The treatment of magnetic 
fields can be somewhat more complex, see, for example, Madelung [4.26, pp. 205 
and following].) 

We also replace the sums by integrals as follows: 
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We assume steady-state conditions so ∂fkσ/∂t = 0. We thus write for the Boltzmann 
integrodifferential equation: 
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 (4.138) 

We now want to see under what conditions we can have a relaxation time. To this 
end we now assume elastic scattering. This can be approximated by electrons 
scattering from phonons if the phonon energies are negligible. In this case we 
write: 
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where the electron energies are given by Ekσ, so 
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where δfkσ = fkσ – f k
0
 σ We will also assume that the effect of external fields in the 

steady state causes a displacement of the Fermi distribution in k space. If the en-
ergy surface is also assumed to be spherical so E = E(k), with k equal to the mag-
nitude of k, (and k′) we can write 
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where c is a constant vector in the direction that f is displaced in k space. Thus 
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and from Fig. 4.10, we see we can write: 
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If we define a relaxation time by 
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Fig. 4.10. Orientation of the constant c vector with respect to k and k′ vectors 
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then 
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since the cos(φ′) vanishes on integration. 
Expressions for ∂fkσ/∂t)c can be written down for various scattering processes. 

For example electron–phonon interactions can be sometimes evaluated as above  
using a relaxation-time approximation. Note if we were concerned with scattering 
of electrons from optical phonons, then in general their energies can not be ne-
glected, and we would have neither an elastic scattering event, nor a relaxation-time 
approximation.11 In any case, the evaluation of Q is complex and further approxi-
mations are typically made. 

An assumption that is often made in deriving an expression for electrical con-
ductivity, as controlled by the electron–phonon interaction, is called the Bloch 
Ansatz. The Bloch Ansatz is the assumption that the phonon distribution remains 
                                                           
11 For a discussion of how to treat such cases, see, for example, Howarth and Sondheimer 

[4.13]. 
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in equilibrium even though the phonons scatter electrons and vice versa. By carry-
ing through an analysis of electron scattering by phonons, using the approxima-
tions equivalent to the relaxation-time approximation (above), neglecting umklapp 
processes, and also making the Debye approximation for the phonons, Bloch 
evaluated the equilibrium resistivity of electrons as a function of temperature. He 
found that the electrical resistivity is approximated by 
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This is called the Bloch–Gruneisen relation. In (4.146), θD is the Debye tempera-
ture. Note that (4.146) predicts the resistivity curve goes as T 5 at low tempera-
tures, and as T at higher temperatures.12 In (4.146), 1/σ is the resistivity ρ, and for 
real materials one should include a residual resistivity ρ0 as a further additive 
factor. The purity of the sample determines ρ0. 

4.5.4  The Relaxation-Time Approximate Solution of the Boltzmann 
Equation for Metals (B) 

A phenomenological form of 
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will be stated. We assume that (∂f/∂t)scatt (= ∂f/∂t)c) is proportional to the differ-
ence of f from its equilibrium f0 and is also proportional to the probability of 
a collision 1/τ, where τ is the relaxation time, as in (4.144) and (4.145). Then 
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Integrating (4.147) gives 

 τ/
0 e tAff −=− , (4.148) 

which simply says that in the absence of external perturbations, any system will 
reach its equilibrium value when t becomes infinite. Equation (4.148) assumes 
that collisions will bring the system to equilibrium. This may be hard to prove, but 
it is physically very reasonable. There may be only a few cases where the assump-
tion of a relaxation time is fully justified. To say more about this point requires 
a discussion of the Q details of the system. In (4.131), τ will be assumed to be 
a function of Ek only. A more drastic assumption would be that τ is a constant, and 
a less drastic assumption would be that τ is a function of k. 

                                                           
12 As emphasized by Arajs [4.3], (4.146) should not be applied blindly with the expectation 

of good results in all metals (particularly for low temperature). 
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With all of the above assumptions and assuming steady state, the Boltzmann 
differential equation is13 
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Since electrons are being considered, if we ignore the possibility of electron corre-
lations, then f k

0
  is the Fermi–Dirac distribution function. (as in (4.154)). 

In order to show the utility of (4.149), a calculation of the electrical conductiv-
ity using (4.149) will be made. We assume ∇T = 0, B = 0, and E = Eẑ  . Then 
(4.149) reduces to 
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If we assume that there is only a small deviation from equilibrium, a first iteration 
yields 
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Since there is no electrical current in equilibrium, substitution of (4.151) into 
(4.122) gives 
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If we have spherical symmetry in k space, 
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Since f k
0
  represents the value of the number of electrons, by our normalization 

(4.5.1) 

 function. Fermi the0 Ff =k  (4.154) 

At temperatures lower than several thousand degrees F ≅ 1 for Ek < EF and 
F ≅ 0 for Ek > EF, and so 
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13 Equation (4.149) is the same as (4.138) and (4.145) with ∇μ = 0 and B = 0. These are 

typical conditions for metals, although not necessarily for semiconductors. 
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where δ is the Dirac delta function and EF is the Fermi energy. Now since a vol-
ume in k-space may be written as 
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where S is a surface of constant energy, (4.153), (4.154), (4.155), and (4.156) 
imply 
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Using Ek = =2k2/2m, (4.157) becomes 
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where the subscript F means that the function is to be evaluated at the Fermi en-
ergy. If n is the number of conduction electrons per unit volume, then 
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Combining (4.158) and (4.159), we find that 
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This is (3.220) that was derived earlier. Now it is clear that all pertinent quantities 
are to be evaluated at the Fermi energy. There are several general techniques for 
solving the Boltzmann equation, for example the variation principle. The book by 
Ziman can be consulted [99, p275ff]. 

4.6  Transport Coefficients 

As mentioned, if we have no magnetic field (in the presence of a magnetic field, 
several other characteristic effects besides those mentioned below are of impor-
tance [4.26, p 205] and [73]), then the approximate Boltzmann differential equa-
tion is (in the relaxation-time approximation) 
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Using the definitions of J and H in terms of the distribution function ((4.122) and 
(4.123)), and using (4.161), we have 

 Tba ∇+= EJ , (4.162) 

 Tdc ∇+= EH . (4.163) 
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For cubic crystals a, b, c, and d are scalars. Equations (4.162) and (4.163) are 
more general than their derivation based on (4.161) might suggest. The equations 
must be valid for sufficiently small E and ∇T. This is seen by a Taylor series 
expansion and by the fact that J and H must vanish when E and ∇T vanish. The 
point of this Section will be to show how experiments determine a, b, c, and d for 
materials in which electrons carry both heat and electricity. 

4.6.1  The Electrical Conductivity (B) 

The electrical conductivity measurement is the simplest of all. We simply set 
∇T = 0 and measure the electrical current. Equation (4.162) becomes J = aE, and 
so we obtain a = σ. 

4.6.2  The Peltier Coefficient (B) 

This is also an easy measurement to describe. We use the same experimental setup 
as for electrical conductivity, but now we measure the heat current. Equation 
(4.163) becomes 

 JJEH
a
ccc ===

σ
. (4.164) 

The Peltier coefficient is the heat current per unit electrical current and so it is 
given by Π = c/a. 

4.6.3  The Thermal Conductivity (B) 

This is just a little more complicated than the above, because we usually do the 
thermal conductivity measurements with no electrical current rather than no elec-
trical field. By the definition of thermal conductivity and (4.163), we obtain 
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−=−= . (4.165) 

Using (4.162) with no electrical current, we have 

 T
a
b ∇−=E . (4.166) 

The thermal conductivity is then given by 

 
a
cbd +−=K . (4.167) 

We might expect the thermal conductivity to be −d, but we must remember that 
we required there to be no electrical current. This causes an electric field to ap-
pear, which tends to reduce the heat current. 
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4.6.4  The Thermoelectric Power (B) 

We use the same experimental setup as for thermal conductivity but now we 
measure the electric field. The absolute thermoelectric power Q is defined as the 
proportionality constant between electric field and temperature gradient. Thus 
 TQ∇=E . (4.168) 

Comparing with (4.166) gives 

 
a
bQ −= . (4.169) 

We generally measure the difference of two thermoelectric powers rather than the 
absolute thermoelectric power. We put two unlike metals together in a loop and 
make a break somewhere in the loop as shown in Fig. 4.11. If VAB is the voltage 
across the break in the loop, an elementary calculation shows 
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Fig. 4.11. Circuit for measuring the thermoelectric power. The junctions of the two metals 
are at temperature T1 and T2 

4.6.5  Kelvin’s Theorem (B) 

A general theorem originally stated by Lord Kelvin, which can be derived from 
the thermodynamics of irreversible process, states that [99] 
 QT=Π . (4.171) 

Summarizing, by using (4.162), (4.163), σ = a, (4.165), (4.167), (4.164), and 
(4.171), we can write 

 T
T

∇Πσσ −= EJ , (4.172) 
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If, in addition, we assume that the Wiedemann–Franz law holds, then K = CTσ, 
where C = (π2/3)(k/e)2, and we obtain 

 T
T

∇Πσσ −= EJ , (4.174) 
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We summarize these results in Table 4.5. As noted in the references there are 
several other transport coefficients including magnetoresistance, Rigli–Leduc, 
Ettinghausen, Nernst, and Thompson. 

Table 4.5. Transport coefficients 

Quantity Definition Comment 

Electrical conductivity Electric current density at unit 
electric field (no magnetic (B) field, 
no temperature gradient). 

See Sect. 4.5.4 and 4.6.1 

Thermal conductivity Heat flux per unit temp. gradient 
(no electric current). 

See Sect. 4.6.3 

Peltier coefficient Heat exchanged at junction per 
electric current density. 

See Sect. 4.6.2 

Thermoelectric power 
(related to Seebeck 
effect) 

Electric field per temperature gradi-
ent (no electric current). 

See Sect. 4.6.4 

Kelvin relations Relates thermopower, Peltier coef-
ficient and temperature. 

See Sect. 4.6.5 

References: 
[4.1, 4.32, 4.39] 

4.6.6  Transport and Material Properties in Composites (MET, MS) 

Introduction (MET, MS) 

Sometimes the term composite is used in a very restrictive sense to mean fibrous 
structures that are used, for example, in the aircraft industry. The term composite 
is used much more generally here as any material composed of constituents that 
themselves are well defined. A rock composed of minerals, is thus a composite 
using this definition. In general, composite materials have become very important 
not only in the aircraft industry, but in the manufacturing of cars, in many kinds of 
building materials, and in other areas. 
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A typical problem is to find the effective dielectric constant of a composite 
media. As we will show below, if we can find the potential as a function of posi-
tion, we can evaluate the effective dielectric constant. First, we want to illustrate 
that this is also the same problem as the effective thermal conductivity, the effec-
tive electrical conductivity, or the effective magnetic permeability of a composite. 
For in each case, we end up solving the same differential equation as shown in 
Table 4.6. 

Table 4.6. Equivalent problems 

Dielectric constant 
 
D = εE 
ε is dielectric constant 
E is electric field 
D is electric displacement vector 
 
∇ × E = 0 
(no changing B) 
E = −∇(φ) 
∇ · D = 0 
(no free charge) 
∇ · (ε∇(φ)) = 0 
 
B.C. 
φ constant at top and bottom 
∇(φ) = 0 on side surfaces 

Magnetic permeability 
 
B = µH 
µ is magnetic permeability 
H is magnetic field intensity 
B is magnetic flux density 
 
∇ × B = 0 
(no current, no changing E) 
H = −∇(Φ) 
∇ · B= 0 
(Maxwell equation) 
∇ · (µ∇(Φ)) = 0 
 
analogous B.C. 

Electrical conductivity 
 
J = σE and only driven by E 
σ is electrical conductivity 
E is electric field 
J is electrical current density 
 
∇ × E = 0 
(no changing B) 
E = −∇(φ) 
∇ · J = 0 
(cont. equation, steady state) 
∇ · (s∇(φ)) = 0 
analogous B.C. 

Thermal conductivity 
 
J = −K∇(T) and only driven by ∇T 
K is the thermal conductivity 
T is the temperature 
J is the heat flux 
 
∇ × ∇(T) = 0, an identity 
 
 
grad dot J = 0 
(cont. equation, steady state) 
∇ · K(∇(T)) = 0 
analogous B.C. 

To begin with we must define the desired property for the composite. Consider 
the case of the dielectric constant. Once the overall potential is known (and it will 
depend on boundary conditions in general as well as the appropriate differential 
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equation), the effective dielectric constant may εc be defined such that it would 
lead to the same over all energy. In other words 

 ∫= VE
V

Ec d)()(1 22
0 rrεε , (4.176) 

where 

 ∫= VE
V

E d)(1
0 r , (4.177) 

where V is the volume of the composite, and the electric field E(r) is known from 
solving for the potential. The spatial dependence of the dielectric constant, ε(r), is 
known from the way the materials are placed in the composite. 

 

S

L

Tt = constant

Tb = constant

z

 
Fig. 4.12. The right-circular cylinder shown is assumed to have sides insulated and it has 
volume V = LS 

One may similarly define the effective thermal conductivity. Let b = −∇T, 
where T is the temperature, and h = −K∇T, where K is the thermal conductivity. 
The equivalent definition for the thermal conductivity of a composite is 
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. (4.178) 

For the geometry and boundary conditions shown in Fig. 4.12, we show this ex-
pression reduces to the usual definition of thermal conductivity. 

Note since ∇·h = 0 in the steady state that −∇·(Th) = h·b, and so ∫h·bdV = 
−(Tt − Tb)∫hzdSz, where the law of Gauss has been used, and the integral is over the 
top of the cylinder. Also note, by the Gauss law ẑ  · ∫bdV = (Tt − Tb)S, where S is 
the top or bottom area. We assume either parallel slabs, or macroscopically dilute 
solutions of ellipsoidally shaped particles so that the average temperature gradient 
will be along the z-axis, then 

 ∫=−− top d/)( zzbtc ShLTTSK , (4.179) 

as required by the usual definition of thermal conductivity. 
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It is an elementary exercise to compute the effective material property for the 
series and parallel cases. For example, consider the thermal conductivity. If one 
has a two-component system with volume fractions φ1 and φ2, then for the series 
case one obtains for the effective thermal conductivity Kc of the composite: 
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ϕϕ += . (4.180) 

This is easily shown as follows. Suppose we have a rod of total length L = (l1 + l2) 
and uniform cross-sectional area composed of a smaller length l1 with thermal 
conductivity K1 and an upper length l2 with K2. The sides of the rod are assumed 
to be insulated and we maintain the bottom temperature at T0, the interface at T1, 
and the top at T2. Then since ΔT1 = T0 − T1 and ΔT2 = T1 − T2 we have ΔT = 
ΔT1 + ΔT2 and since the temperature changes linearly along the length of each rod: 
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where Kc is the effective thermal conductivity of the rod. We can thus write: 
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and so 
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and since the volume fractions are given by φ1 = (Al1/AL) = l1/L and φ2 = l2/L, this 
yields the desired result. 

Similarly for the parallel case, one can show: 

 2211 KKKc ϕϕ += . (4.184) 

Consider two equal length slabs of length L and areas A1 and A2. These are placed 
parallel to each other with the sides insulated and the tops and bottoms maintained 
at T0 and T2. Then if ΔT = T0 − T2, the effective thermal conductivity can be de-
fined by 
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TAK
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L
TAAK ΔΔΔ)( 221121 +=+ , (4.185) 

where we have used that the temperature changes linearly along the slabs. Solving 
for K yields the desired relation, with the volume fractions defined by 
φ1 = A1/(A1+A2) and φ2 = A2/(A1+A2). 
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General Theory (MET, MS)14 

Let 

 
∫
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V
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d
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b
b

u , (4.186) 

and with the boundary conditions and material assumptions we have made, u = ẑ . 
Define the following averages: 

 ∫ ⋅= V V
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h d1 hu , (4.187) 
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i
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V
b d1 bu , (4.190) 

where V is the overall volume, and Vi is the volume of each constituent so V = 
∑Vi. From this we can show (using Gauss-law manipulations similar to that al-
ready given) that 

 
b
hKc =  (4.191) 

will give the same value for the effective thermal conductivity as the original 
definition. Letting φi = Vi/V be the volume fractions and fi = b̄ i/b̄  be the “field ra-
tios” we have 

 
b
hfK i

ii = , (4.192) 

and 

 hh ii =∑ ϕ , (4.193) 

so 

 ∑= iii fKK ϕ . (4.194) 

                                                           
14 This is basically Maxwell–Garnett theory. See Garnett [4.9]. See also Reynolds and 

Hough [4.36]. 
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Also 

 1=∑ iif ϕ , (4.195) 

and 

 1=∑ iϕ . (4.196) 

The field ratios fi, the volume fractions φi, and the thermal conductivities Ki of the 
constituents determine the overall thermal conductivity. The fi will depend on the 
Ki and the geometry. They are only known for the case of parallel slabs or very 
dilute solutions of ellipsoidally shaped particles. We have already assumed this, 
and we will only treat these cases. We also only consider the case of two phases, 
although it is relatively easy to generalize to several phases. 

The field ratios can be evaluated from the equivalent electrostatic problem. The 
b inside an ellipsoid bi are given in terms of the externally applied b(b0) by15 

 iii bgb 0= , (4.197) 

where the i refer to the principle axis of the ellipsoid. With the ellipsoid having 
thermal conductivity Kj and its surrounding K* the gi are 
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where the Ni are the depolarization factors. As usual, 

 13
1 =∑ =i iN . 

Redefine (equivalently, e.g. using our conventions, we would apply an external 
thermal gradient along the z-axis) 

 
0

0
b
bu = , 

and let θi be the angle between the principle axes of the ellipsoid and u. Then 

 ∑ ==⋅ 3
1

2
0 cosi iibg θbu , (4.199) 

so 

 ∑= i iij gf θ2cos , (4.200) 

                                                           
15 See Stratton [4.38]. 
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where the sum over i is over the principle axis directions and j refers to the con-
stituents. Conditions that insure that b̄   = b0 have already been assumed. We have 
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Kj is the thermal conductivity of the ellipsoid surrounded by K*. 

Case 1: Thin slab parallel to b0, with K* = K2. Assuming an ellipsoid of revolution, 
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Using 
 ∑= iii fKK ϕ , 

we get 
 2211 ϕϕ KKK += . (4.202) 

We have already seen this is appropriate for the parallel case. 

Case 2: Thin slab with plane normal to b0, K* = K2. 
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so we get 
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Again as before. 

Case 3: Spheres with K* = K2 (where by (4.195), the denominator in (4.204) is 1) 
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These are called the Maxwell (composite) equations (interchanging 1 and 2 gives 
the second one). 

The parallel and series combinations can be shown to provide absolute upper 
and lower bounds on the thermal conductivity of the composite.16 The Maxwell 

                                                           
16 See Bergmann [4.4]. 
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equations provide bounds if the material is microscopically isotropic and homoge-
nous.16 If K2 > K1 then the Maxwell equation written out above is a lower bound. 

As we have mentioned, generalizations to more than two components is rela-
tively straightforward. 

The empirical equation 

 21
21
ϕϕ KKK =  (4.205) 

is known as Lictenecker’s equation and is commonly used when K1 and K2 are not 
too drastically different.17 

Problems 

4.1 According to the equation 

 ∑= m mmmVCK λ3
1 , 

the specific heat Cm can play an important role in determining the thermal 
conductivity K. (The sum over m means a sum over the modes m carrying 
the energy.) The total specific heat of a metal at low temperature can be rep-
resented by the equation 

 BTATCv += 3 , 

where A and B are constants. Explain where the two terms come from. 

4.2 Look at Fig. 4.7 and Fig. 4.9 for the thermal conductivity of metals and insu-
lators. Match the temperature dependences with the “explanations.” For (3) 
and (6) you will have to decide which figure works for an explanation. 

(1) T 
 
(2) T 2 
 
(3) constant 
(4) T 3 
 
(5) T neβ/T 

 
 
 
(6) T 1 

(a) Boundary scattering of phonons 
K = CV̄  λ/3, and V̄ , λ approximately constant. 

(b) Electron–phonon interactions at low temperature 
changes cold to hot electrons and vice versa. 

(c) Cv ∝ T. 
(d) T > θD, you know ρ from Bloch (see Problem 4.4), 

and use the Wiedeman–Franz law. 
(e) C and V̄  ≅ constant. The mean squared displacement 

of the ions is proportional to T and is also inversely 
proportional to the mean free path of phonons. This 
is high-temperature umklapp. 

(f) Umklapp processes at not too high temperatures. 
                                                           
17 Also of some interest is the variation in K due to inaccuracies in the input parameters 

(such as K1, K2) for different models used for calculating K for a composite. See, e.g., 
Patterson [4.34]. 
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4.3 Calculate the thermal conductivity of a good metal at high temperature using 
the Boltzmann equation and the relaxation-time approximation. Combine 
your result with (4.160) to derive the law of Wiedeman and Franz. 

4.4 From Bloch’s result (4.146) show that σ is proportional to T −1 at high tem-
peratures and that σ is proportional to T −5 at low temperatures. Many solids 
show a constant residual resistivity at low temperatures (Matthiessen’s rule). 
Can you suggest a reason for this? 

4.5 Feynman [4.7, p. 226], while discussing the polaron, evaluates the integral 

 ∫=
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(compare (4.112)) where 
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by using the identity: 
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a. Prove this identity 

b. Then show the integral is proportional to 
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and evaluate K3. 

c. Finally, show the desired result: 

 ∗∗+−=
m

kE
2

22

Lc0,
==ωαk , 

where 

 

6
1 c

mm α−
=

∗
∗∗ , 

and m* is the ordinary effective mass. 
 



 

 

5  Metals, Alloys, and the Fermi Surface 

Metals are one of our most important sets of materials. The study of bronzes (al-
loys of copper and tin) dates back thousands of years. Metals are characterized by 
high electrical and thermal conductivity and by electrical resistivity (the inverse of 
conductivity) increasing with temperature. Typically, metals at high temperature 
obey the Wiedeman–Franz law (Sect. 3.2.2). They are ductile and deform plasti-
cally instead of fracturing. They are also opaque to light for frequencies below the 
plasma frequency (or the plasma edge as discussed in the chapter on optical prop-
erties). Many of the properties of metals can be understood, at least partly, by con-
sidering metals as a collection of positive ions in a sea of electrons (the jellium 
model). The metallic bond, as discussed in Chap. 1, can also be explained to some 
extent with this model. 

Metals are very important but this chapter is relatively short. The reason for this 
is that various properties of metals are discussed in other chapters. For example in 
Chap. 3 the free-electron model, the pseudopotential, and band structure were dis-
cussed, as well as some aspects of electron correlations. Electron correlations were 
also mentioned in Chap. 4 along with the electrical and thermal conductivity of sol-
ids including metals. Metals are also important for the study of magnetism 
(Chap. 7) and superconductors (Chap. 8). The effect of electron screening is dis-
cussed in Chap. 9 and free-carrier absorption by electrons in Chap. 10. 

Metals occur whenever one has partially filled bands because of electron concen-
tration and/or band overlapping. Many elements and alloys form metals (see 
Sect. 5.10). The elemental metals include alkali metals (e.g. Na), noble metals (Cu 
and Ag are examples), polyvalent metals (e.g. Al), transition metals with incomplete 
d shells, rare earths with incomplete f shells, lanthanides, and actinides. Even non-
metallic materials such as iodine may become metallic under very high pressure. 

Also, in this chapter we will include some relatively new and novel ideas such 
as heavy electron systems, and so-called linear metals. 

We start by discussing one of the most important properties of metals—the 
Fermi surface, and show how one can use simple free-electron ideas along with 
the Brillouin zone to get a first orientation. 

5.1  Fermi Surface (B) 

Mackintosh has defined a metal as a solid with a Fermi-Surface [5.19]. This tac-
itly assumes that the highest occupied band is only partly filled. At absolute zero, 
the Fermi surface is the highest filled energy surface in k or wave vector space. 
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When one has a constant potential, the metal has free-electron spherical energy 
surfaces, but a periodic potential can cause many energy surface shapes. Although 
the electrons populate the energy surfaces according to Fermi–Dirac statistics, the 
transition from fully populated to unpopulated energy surfaces is relatively sharp 
at room temperature. The Fermi surface at room temperature is typically as well 
defined as is the surface of a peach, i.e. the surface has a little “fuzz”, but the 
overall shape is well defined. 

For many electrical properties, only the electrons near the Fermi surface are ac-
tive. Therefore, the nature of the Fermi surface is very important. Many Fermi sur-
faces can be explained by starting with a free-electron Fermi surface in the ex-
tended-zone scheme and, then, mapping surface segments into the reduced-zone 
scheme. Such an approach is said to be an empty-lattice approach. We are not 
considering interactions but we have already noted that the calculations of Lut-
tinger and others (see Sect. 3.1.4) indicate that the concept of a Fermi surface 
should have meaning, even when electron–electron interactions are included. Ex-
periments, of course, confirm this point of view (the Luttinger theorem states that 
the volume of the Fermi surface is unchanged by interactions). 

When Fermi surfaces intersect Brillouin zone boundaries, useful Fermi surfaces 
can often be constructed by using an extended or repeated-zone scheme. Then con-
stant-energy surfaces can be mapped in such a way that electrons on the surface can 
travel in a closed loop (i.e. without “Bragg scattering”). See, e.g. [5.36, p. 66]. 

Going beyond the empty-lattice approach, we can use the results of calculations 
based on the one-electron theory to construct the Fermi surface. We first solve the 
Schrödinger equation for the crystal to determine Eb(k) for the electrons (b labels 
the different bands). We assume the temperature is zero and we find the highest 
occupied band Eb′(k). For this band, we construct constant-energy surfaces in the 
first Brillouin zone in k-space. The highest occupied surface is the Fermi surface. 
The effects of nonvanishing temperatures and of overlapping bands may make the 
situation more complicated. As mentioned, finite temperatures only smear out the 
surface a little. The highest occupied energy surface(s) at absolute zero is (are) 
still the Fermi surface(s), even with overlapping bands. It is possible to generalize 
somewhat. One can plot the surface in other zones besides the first zone. It is pos-
sible to imagine a Fermi surface for holes as well as electrons, where appropriate. 

However, this approach is often complex so we start with the empty-lattice ap-
proach. Later we will give an example of the results of a band-structure calcula-
tion (Fig. 5.2). We then discuss (Sects. 5.3 and 5.4) how experiments can be used 
to elucidate the Fermi surface. 

5.1.1  Empty Lattice (B) 

Suppose the electrons are characterized by free electrons with effective mass m* 
and let EF be the Fermi energy. Then we can say: 

a) ∗=
m
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d) in a volume ΔkV of k-space, there are 
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electrons per unit volume of real space, and finally 

e) the density of states per unit volume is 
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We consider that each band is formed from an atomic orbital with two spin 
states. There are, thus, 2N states per band if there are N atoms associated with N 
lattice points. If each atom contributes one electron, then the band is half-full, and 
one has a metal, of course. The total volume enclosed by the Fermi surface is de-
termined by the electron concentration. 

5.1.2  Exercises (B) 

In 2D, find the reciprocal lattice for the lattice defined by the unit cell, given next. 

 
b = 2a

a  
The direct lattice is defined by 

 jjbia aba 2     and     === . (5.1) 

The reciprocal lattice is defined by vectors 

 jiBjiA yxyx BBAA +=+=      and     , (5.2) 
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with 

 0     and     2 =⋅=⋅=⋅=⋅ aBbAbBaA π . 

Thus 

 iA
a
π2= , (5.3) 

 jjB
ab
ππ == 2 , (5.4) 

where the 2π now inserted in an alternative convention for reciprocal-lattice vec-
tors. The unit cell of the reciprocal lattice looks like: 

 

2π /a
2π /b

 
Now we suppose there is one electron per atom and one atom per unit cell. We 
want to calculate (a) the radius of the Fermi surface and (b) the radius of an en-
ergy surface that just manages to touch the first Brillouin zone boundary. The area 
of the first Brillouin zone is 

 2
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A ππ == . (5.5) 

The radius of the Fermi surface is determined by the fact that its area is just 1/2 of 
the full Brillouin zone area 
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The radius to touch the Brillouin zone boundary is 
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Thus, 
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and the circular Fermi surface extends into the second Brillouin zone. The first 
two zones are sketched in Fig. 5.1. 
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Fig. 5.1. First (light-shaded area) and second (dark-shaded area) Brillouin zones 

As another example, let us consider a body-centered cubic lattice (bcc) with a 
standard, nonprimitive, cubic unit cell containing two atoms. The reciprocal lattice 
is fcc. Starting from a set of primitive vectors, one can show that the first Brillouin 
zone is a dodecahedron with twelve faces that are bounded by planes with perpen-
dicular vector from the origin at 

 )}1,1,0(),1,0,1(),0,1,1{( ±±±±±±
a
π . 

Since there are two atoms per unit cell, the volume of a primitive unit cell in the 
bcc lattice is 

 
2

3aVC = . (5.8) 

The Brillouin zone, therefore, has volume 
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Let us assume we have one atom per primitive lattice point and each atom con-
tributes one electron to the band. Then, since the Brillouin zone is half-filled, if 
we assume a spherical energy surface, the radius is determined by 
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From (5.11), a sphere of maximum radius kT, as given below, can just be inscribed 
within the first Brillouin zone 
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a

kT
π= . (5.11) 
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Direct computation yields 

 14.1=
F

T
k
k , 

so the Fermi surface in this case, does not touch the Brillouin zone. We might ex-
pect, therefore, that a reasonable approximation to the shape of the Fermi surface 
would be spherical. 

By alloying, it is possible to change the effective electron concentration and, 
hence, the radius of the Fermi surface. Hume-Rothery has predicted that phase 
changes to a crystal structure with lower energy may occur when the Fermi sur-
face touches the Brillouin zone boundary. For example in the AB alloy Cu1−xZnx, 
Cu has one electron to contribute to the relevant band, and Zn has two. Thus, the 
number of electrons on average per atom, α, varies from 1 to 2. 

For another example, let us estimate for a fcc structure (bcc in reciprocal lat-
tice) at what α = αT the Brillouin zone touches the Fermi surface. Let kT be the ra-
dius that just touches the Brillouin zone. Since the number of states per unit vol-
ume of reciprocal space is a constant, 
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where N is the number of atoms. In a fcc lattice, there are 4 atoms per nonprimi-
tive unit cell. If VC is the volume of a primitive cell, then 
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The primitive translation vectors for a bcc unit cell are 
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From this we easily conclude 
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5.2  The Fermi Surface in Real Metals (B) 

5.2.1  The Alkali Metals (B) 

For many purposes, the Fermi surface of the alkali metals (e.g. Li) can be consid-
ered to be spherical. These simple metals have one valence electron per atom. The 
conduction band is only half-full, and this means that the Fermi surface will not 
touch the Brillouin zone boundary (includes Li, Na, K, Rb, Cs, and Fr). 

5.2.2  Hydrogen Metal (B) 

At a high enough pressure, solid molecular hydrogen presumably becomes a metal 
with high conductivity due to relatively free electrons.1 So far, this high pressure 
(about two million atmospheres at about 4400 K) has only been obtained explo-
sively in the laboratory. The metallic hydrogen produced was a fluid. There may 
be metallic hydrogen on Jupiter (which is 75% hydrogen). It is premature, how-
ever, to give the phenomenon extended discussion, or to say much about its Fermi 
surface. 

5.2.3  The Alkaline Earth Metals (B) 

These are much more complicated than the alkali metals. They have two valence 
electrons per atom, but band overlapping causes the alkaline earths to form metals 
rather than insulators. Fig. 5.2 shows the Fermi surfaces for Mg. The case for sec-
ond-zone holes has been called “Falicov’s Monster”. Examples of the alkaline 
earth metals include Be, Mg, Ca, Sr, and Ra. A nice discussion of this as well as 
other Fermi surfaces is given by Harrison [56, Chap. 3]. 

5.2.4  The Noble Metals (B) 

The Fermi surface for the noble metals is typically more complicated than for the 
alkali metals. The Fermi surface of Cu is shown in Fig. 5.3. Other examples are 
Zn, Ag, and Au. Further information about Fermi surfaces is given in Table 5.1. 

                                                           
1 See Wigner and Huntington [5.32]. 
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Fig. 5.2. Fermi surfaces in magnesium based on the single OPW model: (a) second-zone 
holes, (b) first-zone holes, (c) third-zone electrons, (d) third-zone electrons, (e) third-zone 
electrons, (f) fourth-zone electrons. [Reprinted with permission from Ketterson JB and 
Stark RW, Physical Review, 156(3), 748 (1967). Copyright 1967 by the American Physical 
Society.] 

 

(a) (b)  
Fig. 5.3. Sketch of the Fermi surface of Cu (a) in the first Brillouin zone, (b) in a cross Sec-
tion of an extended zone representation 
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Table 5.1. Summary of metals and Fermi surface 

The Fermi energy EF is the highest filled electron energy at absolute zero. The Fermi sur-
face is the locus of points in k space such that E(k) = EF. 
Type of metal Fermi surface Comment 

Free-electron gas Sphere  
Alkali (bcc) 
(monovalent, Na, K, Rb, Cs) 

Nearly spherical Specimens hard to 
work with 

Alkaline earth (fcc) 
(Divalent, Be, Mg, Ca, Sr, Ba) 

See Fig. 5.2. Can be complex 

Noble 
(monovalent, Cu Ag, Au) 

Distorted sphere makes con-
tact with hexagonal faces – 
complex in repeated zone 
scheme. See Fig. 5.3. 

Specimens need to be 
pure and single crystal 

Many more complex examples are discussed in Ashcroft and Mermin [21 Chap. 15]. Ex-
amples include tri (e.g. Al and tetravalent (e.g. Pb) metals, transition metals, rare earth 
metals, and semimetals (e.g. graphite). 

There were many productive scientists connected with the study of Fermi sur-
faces, we mention only: A. B. Pippard, D. Schoenberg, A. V. Gold, and A. R. 
Mackintosh. 

Experimental methods for studying the Fermi surface include the de Haas–van 
Alphen effect, the magnetoacoustic effect, ultrasonic attenuation, magnetoresis-
tance, anomalous skin effect, cyclotron resonance, and size effects (see Ashcroft 
and Mermin [21 Chap. 14]. See also Pippard [5.24]. We briefly discuss some of 
these in Sect. 5.3. 

5.3  Experiments Related to the Fermi Surface (B) 

We will describe the de Haas–van Alphen effect in more detail in the next section. 
Under suitable conditions, if we measure the magnetic susceptibility of a metal as 
a function of external magnetic field, we find oscillations. Extreme cross-sections 
of the Fermi surface normal to the direction of the magnetic field are determined 
by the change of magnetic field that produces one oscillation. For similar physics 
reasons, we may also observe oscillations in the Hall effect, and thermal conduc-
tivity, among others. 

We can also measure the dc electrical conductivity as a function of applied 
magnetic field as in magnetoresistance experiments. Under appropriate condi-
tions, we may see an oscillatory change with the magnetic field as in the de Haas–
-Schubnikov effect. Under other conditions, we may see a steady change of the 
conductivity with magnetic field. The interpretation of these experiments may be 
somewhat complex. 
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In Chap. 6, we will discuss cyclotron resonance in semiconductors. As we will 
see then, cyclotron resonance involves absorption of energy from an alternating 
electric field by an electron that is circling about a magnetic field. In metals, due 
to skin-depth problems, we need to use the Azbel–Kaner geometry that places 
both the electric and magnetic fields parallel to the metallic surface. Cyclotron 
resonance provides a way of finding the effective mass m* appropriate to extremal 
sections of the Fermi surface. This can be used to extrapolate E(k) away from the 
Fermi surface. 

Magnetoacoustic experiments can determine extremal dimensions of the Fermi 
surface normal to the plane formed by the ultrasonic wave and perpendicular mag-
netic field. It turns out that as we vary the magnetic field we find oscillations in 
the ultrasonic absorption. The oscillations depend on the wavelength of the ultra-
sonic waves. Proper interpretation gives the information indicated. Another tech-
nique for learning about the Fermi surface is the anomalous skin effect. We shall 
not discuss this technique here. 

5.4  The de Haas–van Alphen effect (B) 

The de Haas–van Alphen effect will be studied as an example of how experiments 
can be used to determine the Fermi surface and as an example of the wave-packet 
description of electrons. The most important factor in the de Haas–van Alphen ef-
fect involves the quantization of electron orbits in a constant magnetic field. Clas-
sically, the electrons revolve around the magnetic field with the cyclotron fre-
quency 

 
m
eB

c =ω . (5.17) 

There may also be a translational motion along the direction of the field. Let τ be 
the mean time between collisions for the electrons, T be the temperature, and k be 
the Boltzmann constant. 

In order for the de Haas–van Alphen effect to be detected, two conditions must 
be satisfied. First, despite scattering, the orbits must be well defined, or 

 πτω 2>c . (5.18) 

Second, the quantization of levels should not be smeared out by the thermal mo-
tion so 

 kTc >ω= . (5.19) 

The energy difference between the quantized orbits is =ωc, and kT is the average 
energy of thermal motion. To satisfy these conditions, we need large τ and large 
ωc, or high purity, low temperatures, and high magnetic fields. 
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We now consider the motions of the electrons in a magnetic field. For electrons 
in a magnetic field B, we can write (e > 0, see Sect. 6.1.2) 

 )( BvkF ×−== e�= , (5.20) 

and taking magnitudes 

 dtveBdk 1
⊥=

=
, (5.21) 

where v1
⊥  is the component of velocity perpendicular to B and F. 

It will take an electron the same length of time to complete a cycle of motion in 
real space as in k-space. Therefore, for the period of the orbit, we can write 
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=== 1
dd2
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Since the force is perpendicular to the velocity of the electron, the constant 
magnetic field cannot change the energy of the electron. Therefore, in k-space, the 
electron must stay on the same constant energy surface. Only electrons near the 
Fermi surface will be important for most effects, so let us limit our discussion to 
these. That the motion must be along the Fermi surface follows not only from the 
fact that the motion must be at constant energy, but that dk is perpendicular to 

 )(1 kv k E∇⎟
⎠
⎞

⎜
⎝
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=

, (5.23) 

because ∇kE(k) is perpendicular to constant-energy surfaces. Equation (5.23) is 
derived in Sect. 6.1.2. The orbit in k-space is confined to the intersection of the 
Fermi surface and a plane perpendicular to the magnetic field. 

In order to consider the de Haas–van Alphen effect, we need to relate the en-
ergy of the electron to the area of its orbit in k-space. We do this by considering 
two orbits in k-space, which differ in energy by the small amount ΔE. 
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where v⊥ is the component of electron velocity perpendicular to the energy sur-
face. From Fig. 5.4, note 
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Therefore, 
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Fig. 5.4. Constant-energy surfaces for the de Haas–van Alphen effect 

and 
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where ΔA is the area between the two Fermi surfaces in the plane perpendicular to 
B. This result was first obtained by Onsager in 1952 [5.20]. 

Recall that we have already found that the energy levels of an electron in  
a magnetic field (in the z direction) are given by (3.201) 
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This equation tells us that the difference in energy between different orbits with 
the same kz is =ωc. Let us identify the ΔE in the equations of the preceding figure 
with the energy differences of =ωc. This tells us that the area (perpendicular to B) 
between adjacent quantized orbits in k-space is given by 
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The above may be interesting, but it is not yet clear what it has to do with the 
Fermi surface or with the de Haas–van Alphen effect. The effect of the magnetic 
field along the z-axis is to cause the quantization in k-space to be along energy 
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tubes (with axis along the z-axis perpendicular to the cross-sectional area). Each 
tube has a different quantum number with corresponding energy 
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We think of these tubes existing only when the magnetic field along the z-axis is 
turned on. When it is turned on, the tubes furnish the only available states for the 
electrons. If the magnetic field is not too strong, this shifting of states onto the 
tube does not change the overall energy very much. We want to consider what 
happens as we increase the magnetic field. This increases the area of each tube of 
fixed n. It is convenient to think of each tube with only small extension in the kz 
direction, Ziman makes this clear [5.35, Fig. 140, 1st edn.]. For some value of B, 
the tube of fixed n will break away from that part of the Fermi surface (with 
maximum cross-sectional area, see comment after (5.31)). As the tube breaks 
away, it pulls the allowed states (and, hence, electrons) at the Fermi surface with 
it. This causes an increase in energy. This increase continues until the next tube 
approaches from below. The electrons with energy just above the Fermi energy 
then hop down to this new tube. This results in a decrease in energy. Thus, the en-
ergy undergoes oscillations as the magnetic field is increased. These oscillations 
in energy can be detected as an oscillation in the magnetic susceptibility, and this 
is the de Haas–van Alphen effect. The oscillations look somewhat as sketched in 
Fig. 5.5. Such oscillations have now been seen in many metals. 

 χ 

Magnetic susceptibility χ

B
 

Fig. 5.5. Sketch of de Haas-Van Alphen oscillations in Cu 

One might still ask why the electrons hop down to the lower tube. That is, why 
do states become available on the lower tube? The states become available be-
cause the number of states on each tube increases with the increase in magnetic 
field (the density of states per unit area is eB/h, see Sect. 12.7.3). This fact also 
explains why the total number of states inside the Fermi surface is conserved (on 
average) even though tubes containing states keep moving out of the Fermi sur-
face with increasing magnetic field. 



278      5 Metals, Alloys, and the Fermi Surface 

 

The difference in area between the n = 0 tube and the n = n tube is 

 neBA n ⋅=
=

πΔ 2
0 . (5.30) 

Thus, the area of the tube n is 

 )constant(2 += neBAn =
π . (5.31) 

If A0 is the area of an extremal (where one gets the dominant response, see Zi-
man [5.35, p 322]) cross-sectional area (perpendicular to B) of the Fermi surface 
and if B1 and B2 are the two magnetic fields that make adjacent tubes equal in area 
to A0, then 
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and so, by subtraction 
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Δ(1/B) is the change in the reciprocal of the magnetic field necessary to induce 
one fluctuation of the magnetic susceptibility. Thus, experiments combined with 
the above equation determine A0. For various directions of B, A0 gives consider-
able information about the Fermi surface. 

5.5  Eutectics (MS, ME) 

In metals, the study of alloys is very important, and one often encounters phase 
diagrams as in Fig. 5.6. This is a particularly important technical example as dis-
cussed below. The subject of binary mixtures, phase diagrams, and eutectics is 
well treated in Kittel and Kroemer [5.15]. 

Alloys that are mixtures of two or more substances with two liquidus branches, 
as shown in Fig. 5.6, are especially interesting. They are called eutectics and the 
eutectic mixture is the composition that has the lowest freezing point, which is 
called the eutectic point (0.3 in Fig. 5.6). At the eutectic, the mixture freezes rela-
tively uniformly (on the large scale) but consists of two separate intermixed 
phases. In solid-state physics, an important eutectic mixture occurs in the Au1−xSix 
system. This system occurs when gold contacts are made on Si devices. The re-
sulting freezing point temperature is lowered, as seen in Fig. 5.6. 
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Fig. 5.6. Sketch of eutectic for Au1–x

Si
x
 Adapted from Kittel and Kroemer (op. cit.) 

5.6  Peierls Instability of Linear Metals (B) 

The Peierls transition [75 pp 108-112, 23 p 203] is an example of a broken sym-
metry (see Sect. 7.2.6) in which the ground state has a lower symmetry than the 
Hamiltonian. It is a sort of metal–insulator phase transition that happens because 
a bandgap can occur at the Fermi surface, which results in an overall lowering of 
energy. One thinks of there being displacements in the regular array of lattice 
ions, induced by a strong electron–phonon interaction, that decreases the elec-
tronic energy without a larger increase in lattice elastic energy. The charge density 
then is nonuniform but has a periodic spatial variation. 

We will only consider one dimension in this section. However, Peierls transi-
tions have been discovered in (very special kinds of) real three-dimensional solids 
with weakly coupled molecular chains. 

As Fig. 5.7 shows, a linear metal (in which the nearly free-electron model is 
appropriate) could lower its total electron energy by spontaneously distorting, that 
is reducing its symmetry, with a wave vector equal to twice the Fermi wave vec-
tor. From Fig. 5.7 we see that the states that increase in energy are empty, while 
those that decrease in energy are full. This implies an additional periodicity due to 
the distortion of 
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or a corresponding reciprocal lattice vector of 

 Fk
p

22 =π . 
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Fig. 5.7. Splitting of energy bands at Fermi wave vector due to distortion 

In the case considered (Fig. 5.7), if kF = π/2a, there would be a dimerization of the 
lattice and the new periodicity would be 2a. Thus, the deformation in the lattice 
can be approximated by 
 )2cos( zkcd F⋅= , (5.35) 

which is periodic with period π/kF as desired, and c is a constant. As Fig. 5.7 
shows, the creation of an energy gap at the Fermi surface leads to a lowering of 
the electronic energy, but there still is a question as to what electron–lattice inter-
action drives the distortion. A clue to the answer is obtained from the considera-
tion of screening of charges by free electrons. As (9.167) shows, there is a singu-
larity in the dielectric function at 2kF that causes a long-range screened potential 
proportional to r−3 cos(2kF r), in 3D. This can relate to the distortion with period 
2π/2kF. Of course, the deformation also leads to an increase in the elastic energy, 
and it is the sum of the elastic and electronic energies that must be minimized. 

For the case where k and k′ are near the Brillouin zone boundary at kF = K′/2, 
we assume, with c1 a constant, that the potential energy due to the distortion is 
proportional to the distortion, so2 
 )2cos()( 11 zkccdczV F⋅== . (5.36) 

So 2V(K′) ≡ 2V(2kF) = c1c, and in the nearly free-electron model we have shown 
(by (3.231) to (3.233)) 
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2 See e.g. Marder [3.34, p. 277] 
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Let k = Δ − K′/2, so 
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For the lower branch, we find: 
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We compute an expression relating to the lowering of electron energy due to the 
gap caused by shifting of lattice ion positions. If we define 
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we can write3 
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 (5.39) 

As noted by R. Peierls in [5.23], this logarithmic dependence on displacement is 
important so that this instability not be swamped other effects. If we assume the 
average elastic energy per unit length is 
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we find the minimum (total Eel + Eelastic) energy occurs at 
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3 The number of states per unit length with both spins is 2dk/2π and we double as we only 

integrate from Δ = 0 to kF or –kF to 0. We compute the derivative, as this is all we need in 
requiring the total energy to be a minimum. 
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The lattice distorts if the quasifree-electron energy is lowered more by the distor-
tions than the elastic energy increases. Now, as defined above, 
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is the free-electron bandwidth, and 
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equals the density (per unit length) of orbitals at the Fermi energy (for free elec-
trons), and we define 
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as an effective interaction energy. Therefore, the distortion amplitude c is propor-
tional to yF times an exponential; 
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Our calculation is of course done at absolute zero, but this equation has a formal 
similarity to the equation for the transition temperature or energy gap as in the su-
perconductivity case. See, e.g., Kittel [23, p 300], and (8.215). Comparison can be 
made to the Kondo effect (Sect. 7.5.2) where the Kondo temperature is also given 
by an exponential. 

5.6.1  Relation to Charge Density Waves (A) 

The Peierls instability in one dimension is related to a mechanism by which 
charge density waves (CDW) may form in three dimensions. A charge density 
wave is the modulation of the electron density with an associated modulation of 
the location of the lattice ions. These are observed in materials that conduct pri-
marily in one (e.g. NbSe3, TaSe3) or two (e.g. NbSe2, TaSe2) dimensions. Limited 
dimensionality of conduction is due to weak coupling. For example, in one direc-
tion the material is composed of weakly coupled chains. The Peierls transitions 
cause a modulation in the periodicity of the ionic lattice that leads to lowering of 
the energy. The total effect is of course rather complex. The effect is temperature 
dependent, and the CDW forms below a transition temperature with the strength p 
(see as in (5.46)) growing as the temperature is lowered. 
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The charge density assumes the form 

 )]cos(1)[()( 0 φρρ +⋅+= rkrr p , (5.46) 

where φ is the phase, and the length of the CDW determined by k is, in general, 
not commensurate with the lattice. k is given by 2kF where kF is the Fermi wave 
vector. CDWs can be detected as satellites to Bragg peaks in X-ray diffraction. 
See, e.g., Overhauser [5.21]. See also Thorne [5.31]. 

CDW’s have a long history. Peierls considered related mechanisms in the 
1930s. Frolich and Peierls discussed CDWs in the 1950s. Bardeen and Frolich ac-
tually considered them as a model for superconductivity. It is true that some CDW 
systems show collective transport by sliding in an electric field but the transport is 
damped. It also turns out that the total electron conduction charge density is in-
volved in the conduction. 

It is well to point out that CDWs have three properties (see, e.g., Thorne op cit) 

a. An instability associated with the Fermi surface caused by electron–phonon 
and electron–electron interactions. 

b. An opening of an energy gap at the Fermi surface. 

c. The wavelength of the CDW is π/kF. 

5.6.2  Spin Density Waves (A) 

Spin density waves (SDW) are much less common than CDW. One thinks here of 
a “spin Peierls” transition. SDWs have been found in chromium. The charge den-
sity of a SDW with up (↑ or +) and down (↓ or −) spins looks like 

 ( ) ( ) ( )[ ]φρρ +⋅±=± rkrr cos1
2
1

0 p . (5.47) 

So, there is no change in charge density [ρ+ + ρ− = ρ0(r)] except for that due to lat-
tice periodicity. The spin density, however, looks like 

 )cos()(ˆ)( 0S φρε +⋅= rkrrρ , (5.48) 

where ε̂  defines the quantization axis for spin. In general, the SDW is not com-
mensurate with the lattice. SDWs can be observed by magnetic satellites in neu-
tron diffraction. See, e.g., Overhauser [5.21]. Overhauser first discussed the possi-
bility of SDWs in 1962. See also Harrison [5.10]. 

5.7  Heavy Fermion Systems (A) 

This has opened a new branch of metal physics. Certain materials exhibit huge 
(~ 1000me) electron effective masses at very low temperatures. Examples are 
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CeCu2Si2, UBe13, UPt3, CeAl3, UAl2, and CeAl2. In particular, they may show 
large, low-T electronic specific heat. Some materials show f-band superconductiv-
ity—perhaps the so-called “triplet superconductivity” where spins do not pair. The 
novel results are interpreted in terms of quasiparticle interactions and incom-
pletely filled shells. The heavy fermions represent low-energy excitations in 
a strongly correlated, many-body state. See Stewart [5.30], Radousky [5.25]. See 
also Fisk et al [5.8]. 

5.8  Electromigration (EE, MS) 

Electromigration is of great interest because it is an important failure mechanism 
as aluminum interconnects in integrated circuits are becoming smaller and smaller 
in very large scale integrated (VLSI) circuits. Simply speaking, if the direct cur-
rent in the interconnect is large, it can start some ions moving. The motion contin-
ues under the “push” of the moving electrons. 

More precisely, electromigration is the motion of ions in a conductor due to 
momentum exchange with flowing electrons and also due to the Coulomb force 
from the electric field.4 The momentum exchange is dubbed the electron wind and 
we will assume it is the dominant mechanism for electromigration. Thus, elec-
tromigration is diffusion with a driving force that increases with electric current 
density. It increases with decreasing cross section. The resistance is increased and 
the heating is larger as are the lattice vibration amplitudes. We will model the ine-
lastic interaction of the electrons with the ion by assuming the ion is in a potential 
hole, and later simplify even that assumption. 

Damage due to electromigration can occur when there is a divergence in the 
flux of aluminum ions. This can cause the appearance of a void and hence a break 
in the circuit or a hillock can appear that causes a short circuit. Aluminum is 
cheaper than gold, but gold has much less electromigration-induced failures when 
used in interconnects. This is because the ions are much more massive and hence 
harder to move. 

Electromigration is a very complex process and we follow Fermi’s purported 
advice to use simpler models for complex situations. We do a one-dimensional 
classical calculation to illustrate how the electron wind force can assist in breaking 
atoms loose and how it contributes to the steady flow of ions. We let p and P be 

                                                           
4 To be even more precise the phenomena and technical importance of electromigration is 

certainly real. The explanations have tended to be controversial. Our explanation is the 
simplest and probably has at least some of the truth (See, e.g., Borg and Dienes [5.3].) 
The basic physics involving momentum transfer was discussed early on by Fiks [5.7] and 
Huntington and Grove [5.13]. Modern work is discussed by R. S Sorbello as referred to 
at the end of this section. 
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the momentum of the electron before and after collision, and pa and Pa be the 
momentum of the ion before and after. By momentum and energy conservation 
we have: 

 aa PPpp +=+ , (5.49) 
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where V0 is the magnitude of the potential hole the ion is in before collision, and 
m and ma are the masses of the electron and the ion, respectively. Solving for Pa 
and P in terms of pa and p, retaining only the physically significant roots and as-
suming m << ma: 

 0
2 2)( mVpppP aa −++= , (5.51) 

 0
2 2mVpP −−= . (5.52) 

In order to move the ion, the electron’s kinetic energy must be greater than V0 as 
perhaps is obvious. However, the process by which ions are started in motion is 
surely more complicated than this description, and other phenomena, such as the 
presence of vacancies are involved. Indeed, electromigration is often thought to 
occur along grain boundaries. 

For the simplest model, we may as well start by setting V0 equal to zero. This 
makes the collisions elastic. We will assume that the ions are pushed along by the 
electron wind, but there are other forces that cancel out the wind force, so that the 
flow is in steady state. The relevant conservation equations become: 

 .,2 pPppP aa −=+=  

We will consider motion in one dimension only. The ions drift along with a mo-
mentum pa. The electrons move back and forth between the drifting ions with 
momentum p. We assume the electron’s velocity is so great that the ions are sta-
tionary in comparison. Assume the electric field points along the −x-axis. Elec-
trons moving to the right collide and increase the momentum of the ions, and 
those moving to the left decrease their momentum. Because of the action of the 
electric field, electrons moving to the right have more momentum so the net effect 
is a small increase in the momentum of the ions (which, as mentioned, is removed 
by other effects to produce a steady-state drift). If E is the electric field, then in 
time τ, (the time taken for electrons to move between ions), an electron of charge 
−e gains momentum 

 τeE=Δ , (5.53) 

if it moves against the field, and it loses a similar amount of momentum if it goes 
in the opposite direction. Assume the electrons have momentum p when they are 



286      5 Metals, Alloys, and the Fermi Surface 

 

halfway between ions. The net effect of collisions to the left and to the right of the 
ion is to transfer an amount of momentum of 

 τeE2Δ = . (5.54) 

This amount of momentum is gained per pair of collisions. Each ion experiences 
such pair collisions every 2τ. Thus, each ion gains on average an amount of mo-
mentum eEτ in time τ. If n is the electron density, v the average velocity of elec-
trons and σ the cross section, then the number of collisions per unit time is nvσ, 
and the net force is this times the momentum transferred per collision. Since the 
mean free path is λ = vτ, we find for the magnitude of the wind force 

 λσστλτ eEnneEFW == )/( . (5.55) 

If Ze is the charge of the ion, then the net force on the ion, including the electron 
wind and direct Coulomb force can be written 

 eEZF ∗−= , (5.56) 

where the effective charge of the ion is 

 ZnZ −=∗ λσ , (5.57) 

and the sign has been chosen so a positive electric field gives a negative wind 
force (see Borg and Dienes, op cit). The subject is of course much more compli-
cated that this. Note also, if the mobility of the ions is μ, then the ion flux under 
the wind force has magnitude Z*naμE, where na is the concentration of the ions. 
For further details, see, e.g., Lloyd [5.18]. See also Sorbello [5.28]. Sorbello 
summarizes several different approaches. Our approach could be called a rudi-
mentary ballistic method. 

5.9  White Dwarfs and Chandrasekhar’s Limit (A) 

This Section is a bit of an excursion. However, metals have electrons that are de-
generate as do white dwarfs, except the electrons here are at a much higher degen-
eracy. White dwarfs evolve from hydrogen-burning stars such as the sun unless, as 
we shall see, they are much more massive than the sun. In such stars, before 
white-dwarf formation, the inward pressure due to gravitation is balanced by the 
outward pressure caused by the “burning” of nuclear fuel. 

Eventually the star runs out of nuclear fuel and one is left with a collection of elec-
trons and ions. This collection then collapses under gravitational pressure. the elec-
tron gas becomes degenerate when the de Broglie wavelength of the electrons be-
comes comparable with their average separation. Ions are much more massive. Their 
de Broglie wavelength is much shorter and they do not become degenerate. The 
outward pressure of the electrons, which arises because of the Pauli principle and the 
electron degeneracy, balances the inward pull of gravity and eventually the star 
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reaches stability. However, by then it is typically about the size of the earth and is 
called a white dwarf. 

A white dwarf is a mass of atoms with major composition of C12 and O16. We 
assume the gravitational pressure is so high that the atoms are completely ionized, 
so the white dwarf is a compound of ions and degenerate electrons. 

For typical conditions, the actual temperature of the star is much less than the 
Fermi temperature of the electrons. Therefore, the star’s electron gas can be re-
garded as an ideal Fermi gas in the ground state with an effective temperature of 
absolute zero. 

In white dwarfs, it is very important to note that the density of electrons is such 
as to require a relativistic treatment. A nonrelativistic limit does not put a mass 
limit on the white dwarf star. 

Some reminders of results from special relativity: The momentum p is given by 

 vmmvp γ0== , (5.58) 

where m0 is the rest mass. 
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v=β  (5.59) 
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5.9.1  Gravitational Self-Energy (A) 

If G is the gravitational constant, the gravitational self-energy of a mass M with 
radius R is 
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α . (5.62) 

For uniform density, α = 3/5, which is an oversimplification. We simply assume 
α = 1 for stars. 

5.9.2  Idealized Model of a White Dwarf (A)5 

We will simply assume that we have N electrons in their lowest energy state, 
which is of such high density that we are forced to use relativistic dynamics. This 

                                                           
5 See e.g. Huang [5.12]. See also Shapiro and Teukolsky [5.26]. 
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leads to less degeneracy pressure than in the nonrelativistic case and hence col-
lapse. The nuclei will be assumed motionless, but they will provide the gravita-
tional force holding the white dwarf together. The essential features of the model 
are the Pauli principle, relativistic dynamics, and gravity. 

We first need to calculate the relativistic pressure exerted by the Fermi gas of 
electrons in their ground state. The combined first and second laws of thermody-
namics for open systems states: 

 dNpdVTdSdU μ+−= . (5.63) 

As T → 0, U → E0, so 
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For either up or down spin, the electron energy is given by 

 22
e

2 )()( cmpcp +=ε , (5.65) 

where me is the rest mass of the electrons. Including spin, the ground-state energy 
of the Fermi gas is given by (with p = =k) 
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The Fermi momentum kF is determined from 

 NVkF =3

3

3π
, (5.67) 

where N is the number of electrons, or 
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From the above we have 

 ∫ +∝ cmk eF xxx
N
E =

0
220 d1 , (5.69) 

where x = =k/mec. The volume of the star is related to the radius by 

 3
3
4 RV π=  (5.70) 
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and the mass of the star is, neglecting electron mass and assuming the neutron 
mass equals the proton mass (mp) and that there are the same number of each 

 NmM p2= . (5.71) 

Using (5.64) we can then show for highly relativistic conditions (xF >> 1) that 

 ββ ′−′∝ 2
0p , (5.72) 

where 

 2

3/2

R
M∝′β . (5.73) 

We now want to work out the conditions for equilibrium. Without gravity, the 
work to compress the electrons is 

 ∫∞ ⋅− R rrp d4 2
0 π . (5.74) 

Gravitational energy is approximately (with α = 1) 
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If R is the equilibrium radius of the star, since gravitational self-energy plus work 
to compress = 0, we have 
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Differentiating, we get the condition for equilibrium 
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Using the expression for p0 (5.72) with xF >> 1, we find 
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where 

 sun0 MM ≅ , (5.79) 

and this result is good for small R (and large xF). A more precise derivation pre-
dicts M0 ≅ 1.4Msun. Thus, there is no white dwarf star with mass M ≥ M0 ≅ Msun. 
See Fig. 5.8. M0 is known as the mass for the Chandrasekhar limit. When the mass 
is greater than M0, the Pauli principle is not sufficient to support the star against 
gravitational collapse. It may then become a neutron star or even a black hole, de-
pending upon the mass. 
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Fig. 5.8. The Chandrasekhar limit 

5.10  Some Famous Metals and Alloys (B, MET)6 

We finish the chapter on a much less abstract note. Many of us became familiar 
with the solid-state by encountering these metals. 

Iron This, of course, is the most important metal. Alloying with carbon, 
steel of much greater strength is produced. 

Aluminum The second most important metal. It is used everywhere from alumi-
num foil to alloys for aircraft. 

Copper Another very important metal used for wires because of its high 
conductivity. It is also very important in brasses (copper-zinc al-
loys). 

Zinc Zinc is widely used in making brass and for inhibiting rust in steel 
(galvanization). 

Lead Used in sheathing of underground cables, making pipes, and for the 
absorption of radiation. 

Tin Well known for its use as tin plate in making tin cans. Originally, the 
word “bronze” was meant to include copper-tin alloys, but its use 
has been generalized to include other materials. 

Nickel Used for electroplating. Nickel steels are known to be corrosion resis-
tant. Also used in low-expansion “Invar” alloys (36% Ni-Fe alloy). 

                                                           
6 See Alexander and Street [5.1]. 
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Chromium Chrome plated over nickel to produce an attractive finish is a major 
use. It is also used in alloy steels to increase hardness. 

Gold Along with silver and platinum, gold is one of the precious metals. 
Its use as a semiconductor connection in silicon is important. 

Titanium Much used in the aircraft industry because of the strength and light-
ness of its alloys. 

Tungsten Has the highest melting point of any metal and is used in steels, as 
filaments in light bulbs and in tungsten carbide. The hardest known 
metal. 

Problems 

5.1 For the Hall effect (metals-electrons only), find the Hall coefficient, the effec-
tive conductance jx/Ex, and σyx. For high magnetic fields, relate σyx to the Hall 
coefficient. Assume the following geometry: 

  y, Ey

 jy

z, Bz  
Reference can be made to Sect. 6.1.5 for the definition of the Hall effect. 

5.2 (a) A twodimensional metal has one atom of valence one in a simple rectan-
gular primitive cell a = 2, b = 4 (units of angstroms). Draw the First Brillouin 
zone and give dimensions in cm–1. 

(b) Calculate the areal density of electrons for which the free electron Fermi 
surface first touches the Brillouin zone boundary. 

5.3 For highly relativistic conditions within a white dwarf star, derive the rela-
tionship for pressure p0 as a function of mass M  and radius R  using p0 = 
− ∂E0/∂V. 

5.4 Consider the current due to metal-insulator-metal tunneling. Set up an expres-
sion for calculating this current. Do not necessarily assume zero temperature. 
See, e.g., Duke [5.6]. 

5.5 Derive (5.37). 



 

 

6  Semiconductors 

Starting with the development of the transistor by Bardeen, Brattain, and Shockley 
in 1947, the technology of semiconductors has exploded. With the creation of inte-
grated circuits and chips, semiconductor devices have penetrated into large parts of 
our lives. The modern desktop or laptop computer would be unthinkable without 
microelectronic semiconductor devices, and so would a myriad of other devices. 

Recalling the band theory of Chap. 3, one could call a semiconductor a narrow-
gap insulator in the sense that its energy gap between the highest filled band (the 
valence band) and the lowest unfilled band (the conduction band) is typically of 
the order of one electron volt. The electrical conductivity of a semiconductor is 
consequently typically much less than that of a metal. 

The purity of a semiconductor is very important and controlled doping is used 
to vary the electrical properties. As we will discuss, donor impurities are added to 
increase the number of electrons and acceptors are added to increase the number 
of holes (which are caused by the absence of electrons in states normally electron 
occupied – and as discussed later in the chapter, holes act as positive charges). 
Donors are impurities that become positively ionized by contributing an electron 
to the conduction band, while acceptors become negatively ionized by accepting 
electrons from the valence band. The electrons and holes are thermally activated 
and in a temperature range in which the charged carriers contributed by the impu-
rities dominate, the semiconductor is said to be in the extrinsic temperature range, 
otherwise it is said to be intrinsic. Over a certain temperature range, donors can 
add electrons to the conduction band (and acceptors can add holes to the valence 
band) as temperature is increased. This can cause the electrical resistivity to de-
crease with increasing temperature giving a negative coefficient of resistance. 
This is to be contrasted with the opposite behavior in metals. For group IV semi-
conductors (Si, Ge) typical donors come from column V of the periodic table (P, 
As, Sb) and typical acceptors from column III (B, Al, Ga, In). 

Semiconductors tend to be bonded tetrahedrally and covalently, although bi-
nary semiconductors may have polar, as well as covalent character. The simplest 
semiconductors are the nonpolar semiconductors from column 4 of the Periodic 
Table: Si and Ge. Compound III-V semiconductors are represented by, e.g., InSb 
and GaAs while II-VI semiconductors are represented by, e.g., CdS and CdSe. 
The pseudobinary compound Hg(1–x)Cd(x)Te is an important narrow gap semicon-
ductor whose gap can be varied with concentration x and it is used as an infrared 
detector. There are several other pseudobinary alloys of technical importance as 
well. 
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As already alluded to, there are many applications of semiconductors, see for 
example Sze [6.42]. Examples include diodes, transistors, solar cells, microwave 
generators, light-emitting diodes, lasers, charge-coupled devices, thermistors, 
strain gauges, and photoconductors. Semiconductor devices have been found to be 
highly economical because of their miniaturization and reliability. We will discuss 
several of these applications. 

The technology of semiconductors is highly developed, but cannot be discussed 
in this book. The book by Fraser [6.14] is a good starting point for a physics ori-
ented discussion of such topics as planar technology, information technology, 
computer memories, etc. 

Table 6.1 and Table 6.2 summarize several semiconducting properties that will 
be used throughout this chapter. Many of the concepts within these tables will be-
come clearer as we go along. However, it is convenient to collect several values 
all in one place for these properties. Nevertheless, we need here to make a few in-
troductory comments about the quantities given in Table 6.1 and Table 6.2. 

In Table 6.1 we mention bandgaps, which as already stated, express the energy 
between the top of the valence band and the bottom of the conduction band. Note 
that the bandgap depends on the temperature and may slowly and linearly de-
crease with temperature, at least over a limited range. 

In Table 6.1 we also talk about direct (D) and indirect (I) semiconductors. If the 
conduction-band minimum (in energy) and the valence-band maximum occur at 
the same k (wave vector) value one has a direct (D) semiconductor, otherwise the 
semiconductor is indirect (I). Indirect and direct transitions are also discussed in 
Chap. 10, where we discuss optical measurement of the bandgap. 

In Table 6.2 we mention several kinds of effective mass. Effective masses are 
used to take into account interactions with the periodic lattice as well as other in-
teractions (when appropriate). Effective masses were defined earlier in Sect. 3.2.1 
(see (3.163)) and discussed in Sect. 3.2.2 as well as Sect. 4.3.3. They will be fur-
ther discussed in this chapter as well as in Sect. 11.3. Hole effective masses are 
defined by (6.65). 

When, as in Sect. 6.1.6 on cyclotron resonance, electron-energy surfaces are 
represented as ellipsoids of revolution, we will see that we may want to represent 
them with longitudinal and transverse effective masses as in (6.103). The relation 
of these to the so-called ‘density of states effective mass’ is given in Sect. 6.1.6 
under “Density of States Effective Electron Masses for Si.” Also, with certain 
kinds of band structure there may be, for example, two different E(k) relations for 
holes as in (6.144) and (6.145). One may then talk of light and heavy holes as in 
Sect. 6.2.1. 

Finally, mobility, which is drift velocity per unit electric field, is discussed in 
Sect. 6.1.4 and the relative static dielectric constant is the permittivity over the 
permittivity of the vacuum. 

The main objective of this chapter is to discuss the basic physics of semicon-
ductors, including the physics necessary for understanding semiconductor devices. 
We start by discussing electrons and holes—their concentration and motion. 
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Table 6.1. Important properties of representative semiconductors (A) 

Semiconductor Direct/indirect, 
crystal struct. 

Lattice con-
stant Bandgap (eV) 

 D/I 300 K (Ǻ)* 0 K 300 K 

Si I, diamond 5.43 1.17 1.124 
Ge I, diamond 5.66 0.78 0.66 
InSb D, zincblende 6.48 0.23 0.17 
GaAs D, zincblende 5.65 1.519 1.424 
CdSe D, zincblende 6.05 1.85 1.70 
GaN D, wurtzite a = 3.16, 

c = 5.12 
3.5 3.44 

* Adapted from Sze SM (ed), Modern Semiconductor Device Physics, 
Copyright © 1998, John Wiley & Sons, Inc, New York, pp. 537-540. 
This material is used by permission of  John Wiley & Sons, Inc. 

Table 6.2. Important properties of representative semiconductors (B) 

Semi-
conductor 

Effective masses 
(units of free electron mass) 

Mobility (300 K) 
(cm2/Vs) 

Relative static di-
electric constant 

 Electron* Hole** Electron Hole  

Si ml = 0.92 
mt = 0.19 

mlh = 0.15 
mhh = 0.54 

1450 505 11.9 

Ge ml = 1.57 
mt = 0.082 

mlh = 0.04 
mhh = 0.28 

3900 1800 16.2 

InSb 0.0136 mlh = 0.0158 
mhh = 0.34 

77 000 850 16.8 

GaAs 0.063 mlh = 0.076 
mhh = 0.50 

9200 320 12.4 

CdSe 0.13 0.45 800 –– 10 

GaN 0.22 0.96 440 130 10.4 

* ml is longitudinal, mt is transverse. 
** mlh is light hole, mhh is heavy hole. 
Adapted from Sze SM (ed), Modern Semiconductor Device Physics, Copyright © 
1998, John Wiley & Sons, Inc, New York, pp. 537-540. This material is used by 
permission of  John Wiley & Sons, Inc. 
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6.1  Electron Motion 

6.1.1  Calculation of Electron and Hole Concentration (B) 

Here we give the standard calculation of carrier concentration based on (a) excita-
tion of electrons from the valence to the conduction band leaving holes in the va-
lence band, (b) the presence of impurity donors and acceptors (of electrons) and 
(c) charge neutrality. This discussion is important for electrical conductivity 
among other properties. 

We start with a simple picture assuming a parabolic band structure of semicon-
ductors involving conduction and valence bands as shown in Fig. 6.1. We will 
later find our results can be generalized using a suitable effective mass 
(Sect.6.1.6). Here when we talk about donor and acceptor impurities we are talk-
ing about shallow defects only (where the energy levels of the donors are just be-
low the conduction band minimum and of acceptors just above the valence-band 
maximum). Shallow defects are further discussed in Sect. 11.2. Deep defects are 
discussed and compared to shallow defects in Sect. 11.3 and Table 11.1. We limit 
ourselves in this chapter to impurities that are sufficiently dilute that they form lo-
calized and discrete levels. Impurity bands can form where 4πa3n/3 ≅ 1 where a is 
the lattice constant and n is the volume density of impurity atoms of a given type. 

The charge-carrier population of the levels is governed by the Fermi function f. 
The Fermi function evaluated at the Fermi energy E = μ is 1/2. We have assumed 
μ is near the middle of the band. The Fermi function is given by 
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In Fig. 6.1 EC is the energy of the bottom of the conduction band. EV is the energy 
of the top of the valence band. ED is the donor state energy (energy with one elec-
tron and in which case the donor is assumed to be neutral). EA is the acceptor state 
energy (which when it has two electrons and no holes is singly charged). For more 
on this model see Table 6.3 and Table 6.4. Some typical donor and acceptor ener-
gies for column IV semiconductors are 44 and 39 meV for P and Sb in Si, 46 and 
160 meV for B and In in Si.1 

We now evaluate expressions for the electron concentration in the conduction 
band and the hole concentration in the valence band. We assume the nondegener-
ate case when E in the conduction band implies (E − μ) >> kT, so 

 ⎟
⎠
⎞

⎜
⎝
⎛ −−≅

kT
EEf μexp)( . (6.2) 

                                                           
1 [6.2, p. 580] 
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Fig. 6.1. Energy gaps, Fermi function, and defect levels (sketch). Direction of increase of 
D(E), f(E)is indicated by arrows 

We further assume a parabolic band, so 
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22

e2
E

m
kE += ∗

= , (6.3) 

where me
* is a constant. For such a case we have shown (in Chap. 3) the density of 

states is given by 
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The number of electrons per unit volume in the conduction band is given by: 

 ∫
∞=

C
d)()(E EEfEDn . (6.5) 

Evaluating the integral, we find 
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For holes, we assume, following (6.3), 
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h
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V
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kEE = , (6.7) 
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which yields the density of states 
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The number of holes per state is 
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Again, we make a nondegeneracy assumption and assume (μ − E) >> kT for E in 
the valence band, so 

 ⎟
⎠
⎞

⎜
⎝
⎛ −≅

kT
Ef μexph . (6.10) 

The number of holes/volume in the valence band is then given by 

 ∫ ∞−= VE EEfEDp d)()( hh , (6.11) 

from which we find 
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Since the density of states in the valence and conduction bands is essentially un-
modified by the presence or absence of donors and acceptors, the equations for n 
and p are valid with or without donors or acceptors. (Donors or acceptors, as we will 
see, modify the value of the chemical potential, μ.) Multiplying n and p, we find 

 2
innp = , (6.13) 

where 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛= ∗∗
kT

E
mmkTni 2

exp)(
2

2 g4/3
he

2/3

2=π
, (6.14) 

where Eg = EC − EV is the bandgap and ni is the intrinsic (without donors or accep-
tors) electron concentration. Equation (6.13) is sometimes called the Law of Mass 
Action and is generally true since it is independent of μ. 

We now turn to the question of calculating the number of electrons on donors 
and holes on acceptors. We use the basic theorem for a grand canonical ensemble 
(see, e.g., Ashcroft and Mermin, [6.2, p 581]) 

 
∑
∑

−−

−−
=

j jj

j jjj

NE

μNE
n

])(exp[

)](exp[N

μβ
β

, (6.15) 

where β = 1/kT and 〈n〉 = mean number of electrons in a system with states j, with 
energy Ej, and number of electrons Nj. 
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Table 6.3. Model for energy and degeneracy of donors 

Number of electrons Energy Degeneracy of state 

Nj = 0 0 1 
Nj = 1 Ed 2 
Nj = 2 → ∞ neglect as too improbable 

We are considering a model of a donor level that is doubly degenerate (in a 
single-particle model). Note that it is possible to have other models for donors and 
acceptors. There are basically three cases to look at, as shown in Table 6.3. Noting 
that when we sum over states, we must include the degeneracy factors. For the 
mean number of electrons on a state j as defined in Table 6.3 
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where nd is the number of electrons/volume on donor atoms and Nd is the number 
of donor atoms/volume. For the acceptor case, our model is given by Table 6.4. 

Table 6.4. Model for energy and degeneracy of acceptors 

Number of electrons Number of holes Energy Degeneracy 

0 2 very large neglect 
1 1 0 2 

2 0 EA 1 

The number of electrons per acceptor level of the type defined in Table 6.4 is 
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which can be written 
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Now, the average number of electrons plus the average number of holes associ-
ated with the acceptor level is 2. So, 〈n〉 + 〈p〉 = 2. We thus find 

 
1)](exp[

2
1

1

aa

a

+−
==

EN
pp

μβ
, (6.20) 

where pa is the number of holes/volume on acceptor atoms. Na is the number of 
acceptor atoms/volume. 

So far, we have four equations for the five unknowns n, p, nd, pa, and μ. A fifth 
equation, determining μ can be found from the condition of electrical neutrality. 
Note: 

 +≡≡− ddd donors positive hence, and, ionized ofnumber NnN , 

 −=≡− aaa acceptors negative ofnumber NpN . 

Charge neutrality then says, 

 −+ +=+ ad NnNp , (6.21) 

or 
 adda pNpnNn ++=++ . (6.22) 

We start by discussing an example of the exhaustion region where all the do-
nors are ionized. We assume Na = 0, so also pa = 0. We assume kT << Eg, so also 
p = 0. Thus, the electrical neutrality condition reduces to 
 dd Nnn =+ . (6.23) 

We also assume a temperature that is high enough that all donors are ionized. This 
requires kT >> Ec − Ed. This basically means that the probability that states in the 
donor are occupied is the same as the probability that states in the conduction 
band are occupied. But, there are many more states in the conduction band com-
pared to donor states, so there are many more electrons in the conduction band. 
Therefore nd << Nd or n ≅ Nd. This is called the exhaustion region of donors. 

As a second example, we consider the same situation, but now the temperature 
is not high enough that all donors are ionized. Using 
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d
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Nn . (6.24) 

In our model a = 1/2, but different models could yield different a. Also 
 )](exp[ cc μβ −−= ENn , (6.25) 

where 
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Fig. 6.2. Sketch of variation of Fermi energy or chemical potential μ, with temperature for 
Na = 0 and Nd > 0 

 
Fig. 6.3. Energy gaps, Fermi function, and defect levels (sketch) 

The neutrality condition then gives 

 d
d

d
cc )](exp[1

)](exp[ N
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NEN =
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μβ

μβ . (6.27) 
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Defining x = eβμ, the above gives a quadratic equation for x. Finding the physically 
realistic solution for low temperatures, kT << (Ec − Ed), we find x and, hence, 

 ]2/)(exp[ dcdc EENNan −−= β . (6.28) 

This result is valid only in the case that acceptors can be neglected, but in actual 
impure semiconductors this is not true in the low-temperature limit. More detailed 
considerations give the variation of Fermi energy with temperature for Na = 0 and 
Nd > 0 as sketched in Fig. 6.2. For the variation of the majority carrier density for 
Nd > Na ≠ 0, we find something like Fig. 6.3. 

6.1.2  Equation of Motion of Electrons in Energy Bands (B) 

We start by discussing the dynamics of wave packets describing electrons [6.33, 
p23]. We need to do this in order to discuss properties of semiconductors such as 
the Hall effect, electrical conductivity, cyclotron resonance, and others. In order to 
think of the motion of charge, we need to think of the charge being transported by 
the wave packets.2 The three-dimensional result using free-electron wave packets 
can be written as 

 )(1 kv k E∇
=

= . (6.29) 

This result, as we now discuss, is appropriate even if the wave packets are built 
out of Bloch waves. 

Let a Bloch state be represented by 

 rk
kk r ⋅= ie)(nn uψ , (6.30) 

where n is the band index and unk(r) is periodic in the space lattice. With the Ham-
iltonian 
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⎝
⎛= ∇=H , (6.31) 

where V(r) is periodic, 

 kkk nnn E ψψ =H , (6.32) 

and we can show 

 kkk nnnk uEu =H , (6.33) 

                                                           
2 The standard derivation using wave packets is given by, e.g., Merzbacher [6.24]. In 

Merzbacher’s derivation, the peak of the wave packet moves with the group velocity. 
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where 
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Note 

 qnkqnkqnkqk uEu ++++ =H , (6.35) 

and to first order in q: 
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To first order 

 kkqkqk nnn EEE ∇⋅+=+ )()( . (6.37) 

Also by first-order perturbation theory 
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From this we conclude 
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Thus if we define 

 kkv nn m
p ψψ= , (6.40) 

then v equals the average velocity of the electron in the Bloch state nk. So we find 

 kkv nE∇
=
1= . 

Note that v is a constant velocity (for a given k). We interpret this as meaning that 
a Bloch electron in a periodic crystal is not scattered. 

Note also that we should use a packet of Bloch waves to describe the motion of 
electrons. Thus we should average this result over a set of states peaked at k. It 
can also be shown following standard arguments (Smith [6.38], Sect. 4.6) that 
(6.29) is the appropriate velocity of such a packet of waves. 
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We now apply external fields and ask what is the effect of these external fields 
on the electrons. In particular, what is the effect on the electrons if they are al-
ready in a periodic potential? If an external force Fext acts on an electron during a 
time interval δt, it produces a change in energy given by 

 tFvxFE δδδ gext == . (6.41) 

Substituting for vg, 

 t
k
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ext= . (6.42) 

Canceling out δE, we find 

 
t
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The three-dimensional result may formally be obtained by analogy to the above: 
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d
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kF == . (6.44) 

In general, F is the external force, so if E and B are electric and magnetic fields, 
then 
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d
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=  (6.45) 

for an electron with charge −e. See Problem 6.3 for a more detailed derivation. 
This result is often called the acceleration theorem in k-space. 

We next introduce the concept of effective mass. In one dimension, by taking 
the time derivative of the group velocity we have 
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Defining the effective mass so 
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we have 
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In three dimensions: 
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Notice in the free-electron case when E =ħ2k2/2m, 
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6.1.3  Concept of Hole Conduction (B) 

The totality of the electrons in a band determines the conduction properties of that 
band. But, when a band is nearly full it is usually easier to consider holes that rep-
resent the absent electrons. There will be far fewer holes than electrons and this in 
itself is a huge simplification. 

It is fairly easy to see why an absent electron in the valence band acts as a posi-
tive electron. See also Kittel [6.17, p206ff]. Let f label filled electron states, and g 
label the states that will later be emptied. For a full band in a crystal, with volume 
V, for conduction in the x direction, 
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so that 

 ∑∑ −= g
g
xf

f
x vv . (6.52) 

If g states of the band are now emptied, then the current is given by 

 ∑∑ =−= g
g
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f
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V
ev

V
ej . (6.53) 

Notice this argument means that the current in a partially empty band can be con-
sidered as due to holes of charge +e, which move with the velocities of the states 
that are missing electrons. In other words, qh = +e and vh = ve. 

Now, let us talk about the energy of the holes. Consider a full band with one 
missing electron. Let the wave vector of the missing electron be ke and the corre-
sponding energy Ee(ke): 
 )( eeelectron missing one solid,band full solid, kEEE += . (6.54) 

Since the hole energy is the energy it takes to remove the electron, we have 

 )(energy Hole eeband full solid,electron missing one solid, kEEE −=−=  (6.55) 

by using the above. Now in a full band the sum of the k is zero. Since we identify 
the hole wave vector as the totality of the filled electronic states 

 0 
e =+∑ ′kk , (6.56) 
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where Σ′ k means the sum over k omitting ke. Thus, we have, assuming symmetric 
bands with Ee(ke) = Ee(−ke): 
 )()( eehh kEkE −−= , (6.58) 

or 
 )()( eehh kEkE −= . (6.59) 

Notice also, since 
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with qh = +e, kh = −ke and ve = vh, we have 
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as expected. Now, since 
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and since ve = vh, then 
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Defining the hole effective mass as 
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we see 
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or 

 ∗∗ −= he mm . (6.67) 

Notice that if Ee = Ak2, where A is constant then me
* > 0, whereas if Ee = −Ak2, 

then mh
* = −me

* > 0, and concave down bands have negative electron masses but 
positive hole masses. Later we note that electrons and holes may interact so as to 
form excitons (Sect. 10.7, Exciton Absorption). 
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6.1.4  Conductivity and Mobility in Semiconductors (B) 

Current can be produced in semiconductors by, e.g., potential gradients (electric 
fields) or concentration gradients. We now discuss this. 

We assume, as is usually the case, that the lifetime of the carriers is very long 
compared to the mean time between collisions. We also assume a Drude model 
with a unique collision or relaxation time τ. A more rigorous presentation can be 
made by using the Boltzmann equation where in effect we assume τ = τ(E). A con-
sequence of doing this is mentioned in (6.102). 

We are actually using a semiclassical Drude model where the effect of the lat-
tice is taken into account by using an effective mass, derived from the band struc-
ture, and we treat the carriers classically except perhaps when we try to estimate 
their scattering. As already mentioned, to regard the carriers classically we must 
think of packets of Bloch waves representing them. These wave packets are large 
compared to the size of a unit cell and thus the field we consider must vary slowly 
in space. An applied field also must have a frequency much less than the bandgap 
over = in order to avoid band transitions. 

We consider current due to drift in an electric field. Let v be the drift velocity of 
electrons, m* be their effective mass, and τ be a relaxation time that characterizes 
the friction drag on the electrons. In an electric field E, we can write (for e > 0) 

 eEvm
t
vm −−=

∗
∗

τd
d . (6.68) 

Thus in the steady state 
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m
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If n is the number of electrons per unit volume with drift velocity v, then the cur-
rent density is 
 nevj −= . (6.70) 

Combining the last two equations gives 
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m
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Thus, the electrical conductivity σ, defined by j/E, is given by 

 
*

2

m
ne τσ = . (6.72) 

3 The electrical mobility is the magnitude of the drift velocity per unit electric 
field |v/E|, so 
 

*m
eτμ = . (6.73) 

                                                           
3 We have already derived this, see, e.g., (3.214) where effective mass was not used and in 

(4.160) where again the m used should be effective mass and τ is more precisely evalu-
ated at the Fermi energy. 
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Notice that the mobility measures the scattering, while the electrical conductivity 
measures both the scattering and the electron concentration. Combining the last 
two equations, we can write 

 μσ ne= . (6.74) 

If we have both electrons (e) and holes (h) with concentration n and p, then 

 he μμσ pene += , (6.75) 

where 
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and 
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The drift current density Jd can be written either as 

 hed pevnevJ +−= , (6.78) 

or 

 EpeneJ )]()[( hed μμ += . (6.79) 

As mentioned, in semiconductors we can also have current due to concentration 
gradients. By Fick’s Law, the diffusion number current is negatively proportional 
to the concentration gradient with the proportionality constant equal to the diffu-
sion constant. Multiplying by the charge gives the electrical current density. Thus, 
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For both drift and diffusion currents, the electronic current density is 
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and the hole current density is 
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In both cases, the diffusion constant can be related to the mobility by the Einstein 
relationship (valid for both Drude and Boltzmann models) 

 kTeD ee μ= , (6.84) 

 kTeD hh μ= . (6.85) 

6.1.5  Drift of Carriers in Electric and Magnetic Fields:  
The Hall Effect (B) 

The Hall effect is the production of a transverse voltage (a voltage change along 
the “y direction”) due to a transverse B-field (in the “z direction”) with current 
flowing in the “x direction.” It is useful for determining information on the sign 
and concentration of carriers. See Fig. 6.4. 

If the collisional force is described by a relaxation time τ, 
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where v is the drift velocity. We treat the steady state with dv/dt = 0. The magnetic 
field is assumed to be in the z direction and we define 

 
e

e m
eB=ω , the cyclotron frequency, (6.87) 

and 
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eτμ = , the mobility. (6.88) 

For electrons, from (6.86) we can write the components of drift velocity as (steady 
state) 
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Fig. 6.4. Geometry for the Hall effect 
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where vz
e  = 0, since Ez = 0. With similar definitions, the equations for holes become 

 h
hhh

h
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hhh

h
xyy vEv τωμ −+= . (6.92) 

Due to the electric field in the x direction, the current is 

 he
xxx pevnev +−=j . (6.93) 

Because of the magnetic field in the z direction, there are forces also in the y di-
rection, which end up creating an electric field Ey in that direction. The Hall coef-
ficient is defined as 
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Equations (6.89) and (6.90) can be solved for the electrons drift velocity and 
(6.91) and (6.92) for the hole’s drift velocity. We assume weak magnetic fields 
and neglect terms of order ωe

2  and ωh
2 , since ωe and ωh are proportional to the 

magnetic field. This is equivalent to neglecting magnetoresistance, i.e. the varia-
tion with resistance in a magnetic field. It can be shown that for carriers of two 
types if we retain terms of second order then we have a magnetoresistance. So far 
we have not considered a distribution of velocities as in the Boltzmann approach. 
Combining these assumptions, we get 
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 xyy EEv hhhh
h τωμμ −+= . (6.98) 

Since there is no net current in the y direction, 

 0he =+−= yyy pevnevj . (6.99) 

Substituting (6.97) and (6.98) into (6.99) gives 
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Putting (6.95) and (6.96) into jx, using (6.100) and putting the results into RH, we 
find 
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where b = μe/μh. Note if p = 0, RH = −1/ne and if n = 0, RH = +1/pe. Both the sign 
and concentration of carriers are included in the Hall coefficient. As noted, this 
development did not take into account that the carrier would have a velocity dis-
tribution. If a Boltzmann distribution is assumed, 
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where r depends on the way the electrons are scattered (different scattering 
mechanisms give different r). 

The Hall effect is further discussed in Sects. 12.6 and 12.7, where peculiar ef-
fects involved in the quantum Hall effect are dealt with. The Hall effect can be 
used as a sensor of magnetic fields since it is proportional to the magnetic field for 
fixed currents. 

6.1.6  Cyclotron Resonance (A) 

Cyclotron resonance is the absorption of electromagnetic energy by electrons in a 
magnetic field at multiples of the cyclotron frequency. It was predicted by 
Dorfmann and Dingel and experimentally demonstrated by Kittel all in the early 
1950s. 

In this section, we discuss cyclotron resonance only in semiconductors. As we 
will see, this is a good way to determine effective masses but few carriers are 
naturally excited so external illumination may be needed to enhance carrier con-
centration (see further comments at the end of this section). Metals have plenty of 
carriers but skin-depth effects limit cyclotron resonance to those electrons near the 
surface (as discussed in Sect. 5.4). 

We work on the case for Si. See also, e.g. [6.33, pp. 78-83]. We impose a mag-
netic field and seek the natural frequencies of oscillatory motion. Cyclotron reso-
nance absorption will occur when an electric field with polarization in the plane of 
motion has a frequency equal to the frequency of oscillatory motion due to the 
magnetic field. We first look at motion for the energy lobes along the kz-axis (see 
Si in Fig. 6.6). The energy ellipsoids are not centered at the origin. Thus, the two 
constant energy ellipsoids along the kz-axis can be written 
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The shape of the ellipsoid determines the effective mass (T for transverse, L for 
longitudinal) in (6.103). The star on the effective mass is eliminated for simplic-
ity. The velocity is given by 

 kkv E∇
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1= , (6.104) 
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so 
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The equation of motion for charge q is 

 Bvk ×q
t

=
d
d= . (6.108) 

Writing out the three components of this equation, and substituting the equations 
for the velocity, we find with (see Fig. 6.5) 

 φθ cossinBBx = , (6.109) 

 φθ sinsinBBy = , (6.110) 
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Seeking solutions of the form 

 )iexp(1 tAkx ω= , (6.115) 

 )iexp(2 tAk y ω= , (6.116) 

 )iexp()( 30 tAkkz ω=− , (6.117) 

and defining a, b, c, and γ for convenience, 
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we can express (6.112), (6.113), and (6.114) in the matrix form 
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Setting the determinant of the coefficient matrix equal to zero gives three solu-
tions for ω, 
 0=ω , (6.123) 
and 

 )( 2222 cba ++= γω . (6.124) 

After simplification, the nonzero frequency solution (6.124) can be written: 
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Since we have two other sets of lobes in the electronic wave function in Si (along 
the x-axis and along the y-axis), we have two other sets of frequencies that can be 
obtained by substituting θx and θy for θ (Fig. 6.5 and Fig. 6.6). 

Note from Fig. 6.5 
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Thus, the three resonance frequencies can be determined. For the (energy) lobes 
along the z-axis, we have found 
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For the lobes along the x-axis, replace θ with θx and get 
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and for the lobes along the y-axis, replace θ with θy and get 
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Fig. 6.5. Definition of angles used for cyclotron-resonance discussion 
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Fig. 6.6. Constant energy ellipsoids in Ge and Si. From Ziman JM, Electrons and Phonons: 
The Theory of Transport Phenomena in Solids, Clarendon Press, Oxford (1960). By per-
mission of Oxford University Press 

In general, then we get three resonance frequencies. Obviously, for certain direc-
tions of B, some or all of these frequencies may become degenerate. 
Several comments: 

1. When mL = mT, these frequencies reduce to the cyclotron frequency ωc = qB/m. 

2. In general, one will have to illuminate the sample to produce enough electrons 
and holes to detect the absorption, as with laser illumination. 

3. In order to see the absorption, one wants collisions to be rare. If τ is the mean 
time between collisions, we then require ωcτ > 1 or low temperatures, high pu-
rity, and high magnetic fields are required. 
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4. The resonant frequencies can be used to determine the longitudinal and trans-
verse effective mass mL, mT. 

5. Extremal orbits, with high density of states, are most important for effective 
absorption. 

Some classic cyclotron resonance results obtained at Berkeley in 1955 by Dres-
selhaus, Kip, and Kittel are sketched in Fig. 6.7. See also the Section below 
“Power Absorption in Cyclotron Resonance.” 
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Fig. 6.7. Sketch of cyclotron resonance for silicon. (near 24×103 Mc/s and 4 K, B at 30° 
with [100] and in (110) plane). Adapted from Dresselhaus, Kip and Kittel [6.11] 

Density of States Effective Electron Masses for Si (A) 

We can now generalize the concept of density of states effective mass so as to ex-
tend the use of equations like (6.4). For Si, we relate the transverse and longitudi-
nal effective masses to the density of states effective mass. See “Density of States 
for Effective Hole Masses” in Sect. 6.2.1 for light and heavy hole effective 
masses. For electrons in the conduction band we have used the density of states. 
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This can be derived from 
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where n(E) is the number of states per unit volume of real space with energy E 
and dVk is the volume of k-space with energy between E and E + dE. Since we 
have derived (see Sect. 3.2.3) 

 kVEn d
)2(

2)(d 3π
= , 

 
E
VED k

d
d

4
1)( 3π

= , 

for 

 2

e

2

2
k

m
E ∗= = , 

with a spherical energy surface, 
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so we get (6.131). 
We know that an ellipsoid with semimajor axes a, b, and c has volume V = 

4πabc/3. So for Si with an energy represented by ((6.110) with origin shifted so 
k0 = 0) 
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the volume in k-space with energy E is 
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Since we have six ellipsoids like this, we must replace in (6.131) 
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or 
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for the electron density of states effective mass. 
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Power Absorption in Cyclotron Resonance (A) 

Here we show how a resonant frequency gives a maximum in the power absorp-
tion versus field, as for example in Fig. 6.7. We will calculate the power absorp-
tion by evaluating the complex conductivity. We use (6.86) with v being the drift 
velocity of the appropriate charge carrier with effective mass m* and charge q = 
−e. This equation neglects interactions between charge carriers in semiconductors 
since the carrier density is low and they can stay out of each others way. In (6.86), 
τ is the relaxation time and the 1/τ terms take care of the damping effect of colli-
sions. As usual the carriers will be assumed to be quasifree (free electrons with an 
effective mass to include lattice effects) and we assume that the wave packets de-
scribing the carriers spread little so the carriers can be treated classically. 

Let the B field be a static field along the z-axis and let E = Exeiωti be the plane-
polarized electric field. Solutions of the form 

 tet ωi)( vv = , (6.134) 

will be sought. Then (6.86) may be written in component form as 
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If we assume the carriers are electrons then j = nevx(–e) = σEx so the complex con-
ductivity is 
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where ne is the concentration of electrons. By solving (6.136) and (6.137) we find 

   222222
c

222
c

0222222
c

22222
c

0
4])(1[

]2)(1[i
4])(1[

2])(1[
τωτωω

τωωωτσ
τωτωω

τωτωωσσ
+−+

−−++
+−+

+−+= , (6.138) 

where σ0 = nee2τ/m* is the dc conductivity and ωc = eB/m*. 
The rate at which energy is lost (per unit volume) due to Joule heating is j·E = 

jxEx. But 
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The average energy (over a cycle) dissipated per unit volume is thus 
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where |E| ≡ Ex. Thus 
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where g = ωτ and gc = ωcτ. We get a peak when g = gc. If there is more than one reso-
nance there is more than one maximum as we have already noted. See Fig. 6.7. 
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Fig. 6.8. Band structures for Si and Ge. For silicon two results are presented: nonlocal 
pseudopotential (solid line) and local pseudopotential (dotted line). Adaptation reprinted 
with permission from Cheliokowsky JR and Cohen ML, Phys Rev B 14, 556 (1976). Copy-
right 1976 by the American Physical Society 
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Fig. 6.9. Theoretical pseudopotential electronic valence densities of states compared with 
experiment for Si and Ge. Adaptation reprinted with permission from Cheliokowsky JR and 
Cohen ML, Phys Rev B 14, 556 (1976). Copyright 1976 by the American Physical Society 

6.2  Examples of Semiconductors 

6.2.1  Models of Band Structure for Si, Ge and II-VI  
and III-V Materials (A) 

First let us give some band structure and density of states for Si and Ge. See Fig. 6.8 
and Fig. 6.9. The figures illustrate two points. First, that model calculation tools us-
ing the pseudopotential (see “The Pseudopotential Method” under Sect. 3.2.3) have 
been able to realistically model actual semiconductors. Second, that the models we 
often use (such as the simplified pseudopotential) are oversimplified but still useful 
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in getting an idea about the complexities involved. As discussed by Cohen and 
Chelikowsky [6.8], optical properties have been very useful in obtaining experimen-
tal results about actual band structures. 

For very complicated cases, models are still useful. A model by Kane has been 
found useful for many II-VI and III-V semiconductors [6.16]. It yields a conduc-
tion band that is not parabolic, as well as having both heavy and light holes and  
a split-off band as shown in Fig. 6.10. It even applies to pseudobinary alloys such 
as mercury cadmium telluride (MCT) provided one uses a virtual crystal approxi-
mation (VCA), in which alloy disorder later can be put in as a perturbation, e.g. to 
discuss mobility. In the VCA, Hg1–xCdxTe is replaced by ATe, where A is some 
“average” atom representing the Hg and Cd. 

 
Fig. 6.10. Energy bands for zincblende lattice structure 

If one solves the secular equation of the Kane [6.16] model, one finds the fol-
lowing equation for the conduction, light holes, and split-off band: 

 0Δ
3
2)Δ()Δ( 222223 =−+−−+ kPEkPEEEE gg , (6.142) 
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where Δ is a constant representing the spin-orbit splitting, Eg is the bandgap, and P 
is a constant representing a momentum matrix element. With the energy origin 
chosen to be at the top of the valence band, if Δ >> Eg and Pk, and including 
heavy holes, one can show: 
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In the above, m is the mass of a free electron (Kane [6.16]). 
Knowing the E vs. k relation, as long as E depends only on |k|, the density of 

states per unit volume is given by 
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Finally, for the conduction band, if ħ2k2/2m is negligible compared to the other 
terms, we can show for the conduction band that 
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This clearly leads to changes in effective mass from the parabolic case (E ∝ k2). 
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Brief properties of MCT, as an example of a II-VI alloy, [6.5, 6.7] showing its im-
portance: 

1. A pseudobinary II-VI compound with structure isomorphic to zincblende. 

2. Hg1–xCdxTe forms a continuous range of solid solutions between the semi-
metals HgTe and CdTe. The bandgap is tunable from 0 to about 1.6 eV as x 
varies from about 0.15 (at low temperature) to 1.0. The bandgap also depends 
on temperature, increasing (approximately) linearly with temperature for a 
fixed value of x. 

3. Useful as an infrared detector at liquid nitrogen temperature in the wavelength 
8–12 micrometers, which is an atmospheric window. A higher operating tem-
perature than alternative materials and MCT has high detectivity, fast response, 
high sensitivity, IC compatible and low power. 

4. The band structure involves mixing of unperturbed valence and conduction 
band wave function, as derived by the Kane theory. They have nonparabolic 
bands, which makes their analysis more difficult. 

5. Typical carriers have small effective mass (about 10−2 free-electron mass), 
which implies large mobility and enhances their value as IR detectors. 

6. At higher temperatures (well above 77 K) the main electron scattering mecha-
nism is the scattering by longitudinal optic modes. These modes are polar 
modes as discussed in Sect. 10.10. This scattering process is inelastic, and it 
makes the calculation of electron mobility by the Boltzmann equation more dif-
ficult (noniterated techniques for solving this equation do not work). At low 
temperatures the scattering may be dominated by charged impurities. See Yu 
and Cardona [6.44, p. 207]. See also Problem 6.7. 

7. The small bandgap and relatively high concentration of carriers make it neces-
sary to include screening in the calculation of the scattering of carriers by sev-
eral interactions. 

8. It is a candidate for growth in microgravity in order to make a more perfect 
crystal. 

The figures below may further illustrate II-VI and III-V semiconductors, which 
have a zincblende structure. Figure 6.11 shows two interpenetrating lattices in the 
zincblende structure. Figure 6.12 shows the first Brillouin zone. Figure 6.13 
sketches results for GaAs (which is zincblende in structure) which can be com-
pared to Si and Ge (see Fig. 6.8). The study of complex compound semiconduc-
tors is far from complete.4 

                                                           
4 See, e.g., Patterson [6.30]. 
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Fig. 6.11. Zincblende lattice structure. The shaded sites are occupied by one type of ion, the 
unshaded by another type 
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Fig. 6.12. First Brillouin zone for zincblende lattice structure. Certain symmetry points are 
denoted with the usual notation 
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Fig. 6.13. Sketch of the band structure of GaAs in two important directions. Note that in the 
valence bands there are both light and heavy holes. For more details see Cohen and 
Chelikowsky [6.8] 

Density of States for Effective Hole Masses (A) 

If we have light and heavy holes with energies 
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each will give a density of states and these density of states will add so we must 
replace in an equation analogous to (6.131), 

 2/32/32/3)( hhlhh mmbym +∗ . 

Alternatively, the effective hole mass for density of states is given by the replace-
ment of 

 3/22/32/3 )(by hhlhh mmm + . 

6.2.2  Comments about GaN (A) 

GaN is a III-V material that has been of much interest lately. It is a direct wide 
bandgap semiconductor (3.44 electron volts at 300 K). It has applications in blue 
and UV light emitters (LEDs) and detectors. It forms a heterostructure (see 
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Sect. 12.4) with AlGaN and thus HFETs (heterostructure field effect transistors) 
have been made. Transistors of both high power and high frequency have been 
produced with GaN. It also has good mechanical properties, and can work at 
higher temperature as well as having good thermal conductivity and a high break-
down field. GaN has become very important for recent advances in solid-state 
lighting. Studies of dopants, impurities, and defects are important for improving 
the light-emitting efficiency. 

GaN is famous for its use in making blue lasers. See Nakamura et al [6.26], 
Pankove and Moustaka (eds) [6.28], and Willardson and Weber [6.43]. 

6.3  Semiconductor Device Physics 

This Section will give only some of the flavor and some of the approximate device 
equations relevant to semiconductor applications. The book by Dalven [6.10] is an 
excellent introduction to this subject. So is the book by Fraser [6.14]. The most 
complete book is by Sze [6.41]. In recent years layered structures with quantum 
wells and other new effects are being used for semiconductor devices. See Chap. 
12 and references [6.1, 6.19] 

6.3.1  Crystal Growth of Semiconductors (EE, MET, MS) 

The engineering of semiconductors has been as important as the science. By engi-
neering we mean growth, purification, and controlled doping. In Chap. 12 we go  
a little further and talk of the band engineering of semiconductors. Here we wish 
to consider growth and related matters. For further details, see Streetman [6.40, 
p12ff]. Without the ability to grow extremely pure single crystal Si, the semicon-
ductor industry as we know it would not have arisen. With relatively few electrons 
and holes, semiconductors are just too sensitive to impurities. 

To obtain the desired pure crystal semiconductor, elemental Si, for example, is 
chemically deposited from compounds. Ingots are then poured that become poly-
crystalline on cooling. 

Single crystals can be grown by starting with a seed crystal at one end and 
passing a molten zone down a “boat” containing the seed crystal (the molten zone 
technique), see Fig. 6.14. 

Since the boat can introduce stresses (as well as impurities) an alternative 
method is to grow the crystal from the melt by pulling a rotating seed from it (the 
Czochralski technique), see Fig. 6.14b. 
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Fig. 6.14. (a) The molten zone technique for crystal growth and (b) the Czochralski Tech-
nique for crystal growth 

Purification can be achieved by passing a molten zone through the crystal. This 
is called zone refining. The impurities tend to concentrate in the molten zone, and 
more than one pass is often useful. A variation is the floating zone technique 
where the crystal is held vertically and no walls are used. 

There are other crystal growth techniques. Liquid phase epitaxy and vapor 
phase epitaxy, where crystals are grown below their melting point, are discussed 
by Streetman (see reference above). We discuss molecular beam epitaxy, impor-
tant in molecular engineering, in Chap. 12. 

In order to make a semiconductor device, initial purity and controlled introduc-
tion of impurities is necessary. Diffusion at high temperatures is often used to 
dope or introduce impurities. An alternative process is ion implantation that can 
be done at low temperature, producing well-defined doping layers. However, lat-
tice damage may result, see Streetman [6.40, p128ff], but this can often be re-
moved by annealing. 

6.3.2  Gunn Effect (EE) 

The Gunn effect is the generation of microwave oscillations in a semiconductor 
like GaAs or InP (or other III-V materials) due to a high (of order several thou-
sand V/cm) electric field. The effect arises due to the energy band structure 
sketched in Fig. 6.15. 

Since m* ∝ (d2E/dk2)−1, we see m2
* > m1

*, or m2 is heavy compared to m1. The 
applied electric field can supply energy to the electrons and raise them from the 
m1

* (where they would tend to be) part of the band to the m2
* part. With their gain 

in mass, it is possible for the electrons to experience a drop in drift velocity (mo-
bility = v/E ∝ 1/m*). 

If we make a plot of drift velocity versus electric field, we get something like 
Fig. 6.16. The differential conductivity is 
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Fig. 6.15. Schematic of energy band structure for GaAs used for Gunn effect 

 
Fig. 6.16. Schematic of electron drift velocity vs. electric field in GaAs 

where J is the electrical current density that for electrons we can write as J = nev, 
where v = |v|, e > 0. Thus, 

 0
d
d <=
E
vnedσ , (6.152) 

when E > Ec and is not too large. This is the region of bulk negative conductivity 
(BNC), and it is unstable and leads to the Gunn effect. The generation of Gunn 
microwave oscillations may be summarized by the following three statements: 

1. Because the electrons gain energy from the electric field, they transfer to a re-
gion of E(k) space where they have higher masses. There, they slow down, 
“pile up”, and form space-charge domains that move with an overall drift ve-
locity v. 

2. We assume the length of the sample is l. A current pulse is delivered for every 
domain transit. 
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3. Because of reduction of the electric field external to the domain, once a domain 
is formed, another is not formed until the first domain drifts across. 

The frequency of the oscillation is approximately 

 HzG10
m10

m/s10
3

7
≈≈= −l

vf . (6.153) 

The instability with respect to charge domain-foundation can be simply argued. In 
one dimension from the continuity equation and Gauss’ law, we have 
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So, 
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or 
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ε
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If σd < 0, and there is a random charge fluctuation, then ρ is unstable with respect 
to growth. A major application of Gunn oscillations is in RADAR. 

We should mention that GaN (see Sect. 6.2.2) is being developed for high-
power and high-frequency (~ 750 GHz) Gunn diodes. 

6.3.3  pn-Junctions (EE) 

The pn junction is fundamental for constructing transistors and many other impor-
tant applications. We assume a linear junction, which is abrupt, with acceptor dop-
ing for x < 0 and donor doping for x > 0 as in Fig. 6.17. Of course, this is an ap-
proximation. No doping profile is absolutely sharp. In some cases a graded 
junction (discussed later) may be a better approximation. We now develop ap-
proximately valid results concerning the pn junction. We use simple principles 
and develop what we call device equations. 
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Fig. 6.17. Model of doping profile of abrupt pn junction 
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Fig. 6.18. The pn junction: (a) Hypothetical junction just after doping but before equilib-
rium (i.e. before electrons and holes are transferred). (b) pn junction in equilibrium. CB = 
conduction band, VB = valence band 

For x < −dp we assume p = Na and for x > +dn we assume p = Nd, i.e. exhaustion 
in both cases. Near the junction at x = 0, holes will tend to diffuse into the x > 0 
region and electrons will tend to diffuse into the x < 0 region. This will cause  
a built-in potential that will be higher on the n-side (x > 0) than the p-side (x < 0). 
The potential will increase until it is of sufficient size to stop the net diffusion of 
electrons to the p-side and holes to the n-side. See Fig. 6.18. The region between 
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−dp and dn is called the depletion region. We further make the depletion layer ap-
proximation that assumes there are negligible free carriers in this depletion region. 
We assume this occurs because the large electric field in the region quickly 
sweeps any free carriers across it. It is fairly easy to calculate the built-in potential 
from the fact that the net hole (or electron) current is zero. 

Consider, for example, the hole current: 

 0
d
d =⎟

⎠
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x
pDEpeJ ppp μ . (6.159) 

The electric field is related to the potential by E = −dφ/dx, and using the Einstein 
relation, Dp = μpkT/e, we find 
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Integrating from −dp to dn, we find 
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where pp0 and pn0 mean the hole concentrations located in the homogeneous part 
of the semiconductor beyond the depletion region. The Law of Mass Action tells 
us that np = ni

2, and we know that pp0 = Na, nn0 = Nd, and nn0pn0 = ni
2; so 

 din Nnp 2
0 = . (6.162) 

Thus, we find 
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for the built-in potential. The same built-in potential results from the constancy of 
the chemical potential. We will leave this as a problem. 

We obtain the width of the depletion region by solving Gauss’s law for this re-
gion. We have assumed negligible carriers in the depletion region −dp to dn: 
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and 

 n
d dxeN

x
E ≤≤+= 0for          

d
d

ε
. (6.165) 



6.3 Semiconductor Device Physics      331 

 

Integrating and using E = 0 at both edges of the depletion region 

 0for          )( ≤≤−+−= xddxeNE pp
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ε
, (6.166) 
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Since E must be continuous at x = 0, we find 

 ndpa dNdN = , (6.168) 

which is just an expression of charge neutrality. Using E = −dφ/dx, integrating 
these equations one more time, and using the fact that φ is continuous at x = 0, we 
find 
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Using the electrical neutrality condition, Nadp = Nddn, we find 
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and the width of the depletion region is W = dp + dn. Notice dp increases as Na de-
creases, as would be expected from electrical neutrality. Similar comments about 
dn and Nd may be made. 

6.3.4  Depletion Width, Varactors, and Graded Junctions (EE) 

From the previous results, we can show for the depletion width at an abrupt pn-
junction 
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Also, 
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If we add a bias voltage φb selected so φb > 0 when a positive bias is applied on 
the p-side, then 
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For noninfinite current, Δφ > φb. 
The charge associated with the space charge on the p-side is Q = eAdpNa, where 

A is the cross-sectional area of the pn-junction. We find 
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The junction capacitance is then defined as 
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J
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ϕd

d= , (6.177) 

which, perhaps, not surprisingly comes out 

 
W
ACJ

ε= , (6.178) 

just like a parallel-plate capacitor. Note that CJ depends on the voltage through W. 
When the pn-junction is used in such a way as to make use of the voltage depend-
ence of CJ, the resulting device is called a varactor. A varactor is useful when it is 
desired to vary the capacitance electronically rather than mechanically. 

To introduce another kind of pn-junction, and to see how this affects the con-
cept of a varactor, let us consider the graded junction. Any simple model of a 
junction only approximately describes reality. This is true for both abrupt and 
graded junctions. The abrupt model may approximate an alloyed junction. When 
the junction is formed by diffusion, it may be better described by a graded junc-
tion. For a graded junction, we assume 

 GxNN ad =− , (6.179) 

which is p-type for x < 0 and n-type for x > 0. Note the variation is now smooth 
rather than abrupt. We assume, as before, that within the transition region we have 
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complete ionization of impurities and that carriers there can be neglected in terms 
of their effect on net charge. Gauss’ law becomes 
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Integrating 
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The doping is symmetrical, so the electric field should vanish at the same distance 
on either side from x = 0. Therefore, 

 
2

Wdd np == , (6.182) 

and 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

2
2

22
WxeGE

ε
. (6.183) 

Integrating 
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Thus, 
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or 
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With an applied voltage, this becomes 
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The charge associated with the right dipole layer is 

 AeGWxeGxAQ W

8
d

22/
0 == ∫ . (6.188) 



334      6 Semiconductors 

 

The junction capacitance therefore is 
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which, finally, gives again 
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But, now W depends on φb in a 1/3 power way rather than a 1/2 power. Different 
approximate models lead to different approximate device equations. 

6.3.5  Metal Semiconductor Junctions — the Schottky Barrier (EE) 

We consider the situation shown in Fig. 6.19 where an n-type semiconductor is in 
contact with the metal. Before contact we assume the Fermi level of the semicon-
ductor is above the Fermi level of the metal. After contact electrons flow from the 
semiconductor to the metal and the Fermi levels equalize. The work functions Φm, 
Φs are defined in Fig. 6.19. We assume Φm > Φs. If Φm < Φs an ohmic contact with a 
much smaller barrier is formed (Streetman [6.40, p185ff]). The internal electric 
fields cause a varying potential and hence band bending as shown. The concept of 
band bending requires the semiclassical approximation (Sect. 6.1.4). Let us analyze 
this in a bit more detail. Choose x > 0 in the semiconductor and x < 0 in the metal. 
We assume the depletion layer has width xb. For xb > x > 0, Gauss’ equation is 
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Fig. 6.19. Schottky barrier formation (sketch) 
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Using E = −dφ/dx, setting the potential at 0 and xb equal to φ0 and φxb, and requir-
ing the electric field to vanish at x = xb, by integrating the above for φ we find 
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If the potential energy difference for electrons across the barrier is 
 )(Δ 0 bzeV ϕϕ −−= , 

we know 
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Solving the above for xb gives the width of the depletion layer as 
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Shottky barrier diodes have been used as high-voltage rectifiers. The behavior of 
these diodes can be complicated by “dangling bonds” where the rough semicon-
ductor surface joins the metal. See Bardeen [6.3]. 

6.3.6  Semiconductor Surface States and Passivation (EE) 

The subject of passivation is complex, and we will only make brief comments. 
The most familiar passivation layer is SiO2 over Si, which reduces the number of 
surface states. A mixed layer of GaAs-AlAs on GaAs is also a passivating layer 
that reduces the number of surface states. The ease of passivation of the Si surface 
by oxygen is a major reason it is the dominant semiconductor for device usage. 
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Fig. 6.20. p-type semiconductor with donor surface states (a) before equilibrium, (b) after 
equilibrium (T = 0). In both (a) and (b) only relative energies are sketched 
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What are surface states? A solid surface is a solid terminated at a two-
dimensional surface. The effect on charge carriers is modeled by using a surface 
potential barrier. This can cause surface states with energy levels in the forbidden 
gap. The name “surface states” is used because the corresponding wave function 
is localized near the surface. Further comments about surface states are found in 
Chap. 11. 

Surface states can have interesting effects, which we will illustrate with an ex-
ample. Let us consider a p-type semiconductor (bulk) with surface states that are 
donors. The situation before and after equilibrium is shown in Fig. 6.20. For the 
equilibrium case (b), we assume that all donor states have given up their electrons, 
and hence, are positively charged. Thus, the Fermi energy is less than the donor-
level energy. A particularly interesting case occurs when the Fermi level is pinned 
at the surface donor level. This occurs when there are so many donor states on the 
surface that not all of them can be ionized. In that case (b), the Fermi level would 
be drawn on the same level as the donor level. 

One can calculate the amount of band bending by a straightforward calculation. 
The band bending is caused by the electrons flowing from the donor states at the 
surface to the acceptor states in the bulk. For the depletion region, we assume, 

 aeNx −=)(ρ  (6.194) 
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So, 
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If nd is the number of donors per unit area, the surface charge density is σ = end. 
The boundary condition at the surface is then 
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If the width of the depletion layer is d, then 

 0)( == dxE . (6.198) 

Integrating (6.196) with boundary condition (6.198) gives 
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Using the boundary condition (6.197), we find 
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Integrating a second time, we find 
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Therefore, the total amount of band bending is  
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This band bending is caused entirely by the assumed ionized donor surface states. 
We have already mentioned that surface states can complicate the analysis of 
metal-semiconductor junctions. 
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Fig. 6.21. p-type semiconductor under bias voltage (energies in each figure are relative) 

6.3.7  Surfaces Under Bias Voltage (EE) 

Let us consider a p-type surface under three kinds of voltage shown in Fig. 6.21: 
(a) a negative bias voltage, (b) a positive bias voltage, and then (c) a very strong, 
positive bias voltage. 

In case (a), the bands bend upward, holes are attracted to the surface, and thus, 
an accumulation layer of holes is founded. In (b), holes are repelled from the sur-
face forming the depletion layer. In (c) the bands are bent sufficiently such that 
the conduction band bottom is below the Fermi energy and the semiconductor be-
comes n-type, forming an inversion region. In all these cases, we are essentially 
considering a capacitor with the semiconductor forming one plate. These ideas 
have been further developed into the MOSFET (metal-oxide semiconductor field-
effect transistor, see Sect. 6.3.10). 
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6.3.8  Inhomogeneous Semiconductors Not in Equilibrium (EE) 

Here we will discuss pn-junctions under bias and how this leads to electron and hole 
injection. We will start with a qualitative treatment and then do a more quantitative 
analysis. The study of pn-junctions is fundamental for the study of transistors. 

 
Fig. 6.22. The pn-junction under bias V: (a) Forward bias, (b) Reverse bias. (Only relative 
shift is shown) 

We start by looking at a pn-junction in equilibrium where there are two types 
of electron flow that balance in equilibrium (as well as two types of hole flow 
which also balance in equilibrium). See also, e.g., Kittel [6.17, p. 572] or Ashcroft 
and Mermin [6.2, p. 600]. 

From the n-side to the p-side, there is an electron recombination (r) or diffu-
sion current (Jnr) where n denotes electrons. This is due to the majority carrier 
electrons, which have enough energy to surmount the potential barrier. This cur-
rent is very sensitive to a bias field that would change the potential barrier. On 
the p-side, there are thermally generated electrons, which in the space-charge re-
gion may be swiftly swept downhill into the n-region. This causes the thermal 
generation (g) or drift current (Jng). Electrons produced farther than a diffusion 



6.3 Semiconductor Device Physics      339 

 

length (to be defined) recombine before being swept across. As mentioned, in the 
absence of potential, the electron currents balance and we have 

 0)0()0( =+ ngnr JJ , (6.203) 

where the 0 in Jnr(0), etc. means zero bias voltage. Similarly, for holes, denoted by 
p, 

 0)0()0( =+ pgpr JJ . (6.204) 

We set the notation that forward bias (V > 0) is when the p-side is higher in poten-
tial than the n-side. See Fig. 6.22. Since the barrier responds exponentially to the 
bias voltage, we might expect the electron injection current, from n to p, to be 
given by 
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The thermal generation current is essentially independent of voltage so 
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Similarly, for injection of holes from p to n, we expect 
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and similarly for the generation current, 
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Adding everything up, we get the Shockley diode equation for a pn-junction under 
bias 
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where J0 = Jnr(0) + Jpr(0). 
We now give a more detailed derivation, in which the exponential term is more 

carefully argued, and J0 is calculated. We assume that both electrons and holes re-
combine (due to various processes) with characteristic recombination times τn and 
τp. The usual assumption is, that as far as net recombination goes with no flow, 
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and 
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where r denotes recombination. Assuming no external generation of electrons or 
holes, the continuity equation with flow and recombination can be written (in one 
dimension): 
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The electron and hole current densities are given by 
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And, as always, we assume Gauss’ law, where ρ is the total charge density 
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We will also assume a steady state, so 
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Fig. 6.23. Schematic of pn-junction (p region for x < 0 and n region for x > 0). Ln and Lp are 
n and p diffusion lengths 



6.3 Semiconductor Device Physics      341 

 

An explicit solution is fairly easy to obtain if we make three further assumptions 
(See Fig. 6.23): 

(a) The electric field is very small outside the depletion region, so whatever drop 
in potential there is occurs across the depletion region. 

(b) The concentrations of injected minority carriers in the region outside the de-
pletion region is negligible compared to the majority carrier concentration. 
Also, the majority carrier concentration is essentially constant beyond the de-
pletion and diffusion regions. 

(c) Finally, we assume negligible generation or recombination of carriers in the 
depletion region. We can argue that this ought to be a good approximation if 
the depletion layer is sufficiently thin. Under this approximation, the electron 
and hole currents are constant across the depletion region. 

A few further comments are necessary before we analyze the pn-junction. In 
the depletion region there are both drift and diffusion currents that are large. In the 
nonequilibrium case they do not quite cancel. Consistent with this the electric 
fields, gradient of carrier densities and space charge are all large. Electric fields 
can be so large here as to lead to the validity of the semiclassical model being 
open to question. However, we are only trying to develop approximate device 
equations so our approximations are probably OK. 

The diffusion region only exists under applied voltage. The minority drift cur-
rent is negligible here but the gradient of carrier densities can still be appreciable 
as can the drift current even though electric fields and space charges are small. 
The majority drift current is not small as the majority density is large. 

In the homogeneous region the whole current is carried by drift and both diffu-
sion currents are negligible. The carrier densities are nearly the same as in equilib-
rium, but the electric field, space charge, and gradient of carrier densities are all 
small. 

For any x (the direction along the pn-junction, see Fig. 6.23), the total current 
should be given by 

 )()(total xJxJJ pn += . (6.218) 

Since by (c) both Jn and Jp are independent of x in the depletion region, we can 
evaluate them for the x that is most convenient, see Fig. 6.23, 

 )()(total nppn dJdJJ +−= . (6.219) 

That is, we need to evaluate only minority current densities. Also, since by (a) and 
(b), the minority current drift densities are negligible, we can write 
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which means we only need to find the minority carrier concentrations. In the 
steady state, neglecting carrier drift currents, we have 
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and 

 p
n

ppp dx
L

nn

x

n
−≤=

−
− for   , 0

d

d
22

2
0 , (6.222) 

where the diffusion lengths are defined by 
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and 
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Diffusion lengths measure the distance a carrier goes before recombining. The so-
lutions obeying appropriate boundary conditions can be written 
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and 
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Thus, 
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and 
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Thus, 
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To finish the calculation, we need expressions for np(−dp) − np0 and pn(−dn) − pn0, 
which are determined by the injected minority carrier densities. 

Across the depletion region, even with applied bias, Jn and Jp are very small 
compared to individual drift and diffusion currents of electrons and holes (which 
nearly cancel). Therefore, we can assume Jn ≅ 0 and Jp ≅ 0 across the depletion 
regions. Using the Einstein relations, as well as the definition of drift and diffu-
sion currents, we have 
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Integrating across the depletion region 
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If Δφ is the built-in potential and φb is the bias voltage with the conventional sign 
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By assumption (b) 
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and 
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So, we find 
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Substituting, we can find the total current, as given by the Shockley diode equa-
tion 
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Reverse Bias Breakdown (EE) 

The Shockley diode equation indicates that the current attains a constant value of 
−J0 when the reverse bias is sufficiently strong. Actually, under large reverse bias, 
the Shockley diode equation is no longer valid and the current becomes arbitrarily 
large and negative. There are two mechanisms for this reverse current breakdown, 
as we discuss below (which may or may not destroy the device). 

One is called the Zener breakdown. This is due to quantum-mechanical inter-
band tunneling and involves a breakdown of the quasiclassical approximation. It 
can occur at lower voltages in narrow junctions with high doping. At higher volt-
ages, another mechanism for reverse bias breakdown is dominant. This is the ava-
lanche mechanism. The electric field in the junction accelerates electrons in the 
electric field. When the electron gains kinetic energy equal to the gap energy, then 
the electron can create an electron–hole pair (e− → e− + e− + h). If the sample is 
wide enough to allow further accelerations and/or if the electrons themselves re-
tain sufficient energy, then further electron–hole pairs can form, etc. Since a very 
narrow junction is required for tunneling, avalanching is usually the mode by 
which reverse bias breakdown occurs. 

6.3.9  Solar Cells (EE) 

One of the most important applications of pn-junctions is for obtaining energy of 
the sun. Compare, e.g., Sze, [6.42, p. 473]. The photovoltaic effect is the appear-
ance of a forward voltage across an illuminated junction. By use of the photo-
voltaic effect, the energy of the sun, as received at the earth, can be converted di-
rectly into electrical power. When the light is absorbed, mobile electron–hole 
pairs are created, and they may diffuse to the pn-junction region if they are created 
nearby (within a diffusion length). Once in this region, the large built-in electric 
field acts on electrons on the p-side, and holes on the n-side to produce a voltage 
that drives a current in the external circuit. 
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The first practical solar cell was developed at Bell Labs in 1954 (by Daryl M. 
Chapin, Calvin S. Fuller, and Gerald L. Pearson). A photovoltaic cell converts 
sunlight directly into electrical energy. An antireflective coating is used to maxi-
mize energy transfer. The surface of the earth receives about 1000 W/m2 from the 
sun. More specifically, AM0 (air mass zero) has 1367 W/m2, while AM1 (directly 
overhead through atmosphere without clouds) is 1000 W/m2. Solar cells are used 
in spacecraft as well as in certain remote terrestrial regions where an economical 
power grid is not available. 

If PM is the maximum power produced by the solar cell and PI is the incident 
solar power, the efficiency is 

 %100
I

M
P
PE = . (6.242) 

A typical efficiency is of order 10%. Efficiencies are limited because photons with 
energy less than the bandgap energy do not create electron–hole pairs and so, can-
not contribute to the output power. On the other hand, photons with energy much 
greater than the bandgap energy tend to produce carriers that dissipate much of 
their energy by heat generation. For maximum efficiency, the bandgap energy 
needs to be just less than the energy of the peak of the solar energy distribution. It 
turns out that GaAs with E ≅ 1.4 eV tends to fit the bill fairly well. In principle, 
GaAs can produce an efficiency of 20% or so. 

The GaAs cell is covered by a thin epitaxial layer of mixed GaAs-AlAs that has 
a good lattice match with the GaAs and that has a large energy gap thus being 
transparent to sunlight. The purpose of this over-layer is to reduce the number of 
surface states (and, hence, the surface recombination velocity) at the GaAs sur-
face. Since GaAs is expensive, focused light can be used effectively. Less expen-
sive Si is often used as a solar cell material. 

Single-crystal Si pn-junctions still have the disadvantage of relatively high 
cost. Amorphous Si is much cheaper, but one cannot make a solar cell with it 
unless it is treated with hydrogen. Hydrogenated amorphous Si can be used since 
the hydrogen apparently saturates some dangling or broken bonds and allows pn-
junction solar cells to be built. We should mention also that new materials for 
photovoltaic solar cells are constantly under development. For example, copper 
indium gallium selenide (CIGS) thin films are being considered as a low-cost al-
ternative. 

Let us start with a one-dimensional model. The dark current, neglecting the se-
ries resistance of the diode can be written 
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The illuminated current is 
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where 
 epIS η=  (6.245) 

(p = photons/s, η = quantum efficiency). Solving for the voltage, we find 
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The open-circuit voltage is 
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because the dark current I = 0 in an open circuit. The short circuit current (with 
V = 0) is 
 SII −=SC . (6.248) 

The power is given by 
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The voltage VM and current IM for maximum power can be obtained by solving 
dP/dV = 0. Since P = IV, this means that dI/dV = −I/V. Figure 6.24 helps to show 
this. If P is the point of maximum power, then at P, 
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Fig. 6.24. Current–voltage relation for a solar cell 
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No current or voltage can be measured across the pn-junction unless light 
shines on it. In a complete circuit, the contact voltages of metallic leads will al-
ways be what is needed to cancel out the built-in voltage at the pn-junction. Oth-
erwise, energy would not be conserved. 

p n

V0

ϕb – V0
ϕb = built-in 

CB 

VB 

 
Fig. 6.25. The photoelectric effect for a pn-junction before and after illumination. The “be-
fore” are the solid lines and the “after” are the dashed lines. φb is the built-in potential and 
V0 is the potential produced by the cell 

To understand physically the photovoltaic effect, consider Fig. 6.25. When 
light shines on the cell, electron–hole pairs are produced. Electrons produced in 
the p-region (within a diffusion length of the pn-junction) will tend to be swept 
over to the n-side and similarly for holes on the n-side. This reduces the voltage 
across the pn-junction from φb to φb − V0, say, and thus, produces a measurable 
forward voltage of V0. The maximum value of the output potential V0 from the so-
lar cell is limited by the built-in potential φb. 

 bV ϕ≤0 , (6.251) 

for if V0 = φb, then the built-in potential has been canceled and there is no poten-
tial left to separate electron–hole pairs. 

In nondegenerate semiconductors suppose, before the p- and n- sides were 
“joined,” we let the Fermi levels be EF(p) and EF(n). When they are joined, equi-
librium is established by electron–hole flow, which equalizes the Fermi energies. 
Thus, the built-in potential simply equals the original difference of Fermi energies 

 )()( pEnEe FFb −=ϕ . (6.252) 
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But, for the nondegenerate case 

 gVCFF EEEpEnE =−≤− )()( . (6.253) 

Therefore, 

 gEeV ≤0 . (6.254) 

Smaller Eg means smaller photovoltages and, hence, less efficiency. By connect-
ing several solar cells together in series, we can build a significant potential with 
arrays of pn-junctions. These connected cells power space satellites. 

We give, now, an introduction to a more quantitative calculation of the behav-
ior of a solar cell. Just as in our discussion of pn-junctions, we can find the total 
current by finding the minority current injected on each side. The only difference 
is that the external photons of light create electron–hole pairs. We assume the flux 
of photons is given by (see Fig. 6.26) 
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x = –d x = 0 x → large

Light 
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Fig. 6.26. A schematic of the solar cell 
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where α is the absorption coefficient, and it is a function of the photon wave-
length. The rate at which electrons or holes are created per unit volume is 
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The equations for the minority carrier concentrations are just like those used for 
the pn-junction in (6.221) and (6.222), except now we must take into account the 
creation of electrons and holes by light from (6.256). We have 
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and 
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Both equations apply outside the depletion region when drift currents are negligi-
ble. The depletion region is so thin it is assumed to be treatable as being located in 
the plane x = 0. 

By adding a particular solution of the inhomogeneous equation to a general so-
lution of the homogeneous equation, we find 
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where it has been assumed that pn approaches a finite value for large x. We now 
have three constants to evaluate (a), (b), and (d). We can use the following bound-
ary conditions: 
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This is a standard assumption that introduces a surface recombination velocity Sp. 
The total current as a function of V0 can be evaluated from 

 )]0()0([ np JJeAI −= , (6.264) 

where A is the cross-sectional area of the p-n junction. V0 is now the bias voltage 
across the pn-junction. The current can be evaluated from (with a negligibly thick 
depletion region) 
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For a modern update, see Martin Green, “Solar Cells” (Chap. 8 in Sze, [6.42]). 
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6.3.10  Transistors (EE) 

A power-amplifying structure made with pn-junctions is called a transistor. There 
are two main types of transistors: bipolar junction transistors (BJTs) and metal-
oxide semiconductor field effect transistors (MOSFETs). MOSFETs are unipolar 
(electrons or holes are the carriers) and are the most rapidly developing type partly 
because they are easier to manufacture. However, MOSFETs have large gate ca-
pacitors and are slower. The huge increase in the application of microelectronics 
is due to integrated circuits and planar manufacturing techniques (Sapoval and 
Hermann, [6.33, p 258]; Fraser, [6.14, Chap. 6]). MOSFETs may have smaller 
transistors and can thus be used for higher integration. A serious discussion of the 
technology of these devices would take us too far aside, but the student should 
certainly read about it. Three excellent references for this purpose are Streetman 
[6.40] and Sze [6.41, 6.42]. 

Although J. E. Lilienfied was issued a patent for a field effect device in 1935, 
no practical commercial device was developed at that time because of the poor 
understanding of surfaces and surface states. In 1947, Shockley, Bardeen, and 
Brattrain developed the point constant transistor and won a Nobel Prize for that 
work. Shockley invented the bipolar junction transistor in 1948. This work had 
been stimulated by earlier work of Schottky on rectification at a metal-
semiconductor interface. A field effect transistor was developed in 1953, and the 
more modern MOS transistors were invented in the 1960s.  

6.3.11  Charge-Coupled Devices (CCD) (EE) 

Charge-coupled devices (CCDs) were developed at Bell Labs in the 1970s and are 
now used extensively by astronomers for imaging purposes, and in digital cameras. 

CCDs are based on ideas similar to those in metal-insulator-semiconductor 
structures that we just discussed. These devices are also called charge-transfer de-
vices. The basic concept is shown in Fig. 6.27. Potential wells can be created un-
der each electrode by applying the proper bias voltage. 

 312321 or  and0,, VVVVVV >< . 

By making V2 more negative than V1, or V3, one can create a hole inversion layer 
under V2. Generally, the biasing is changed frequently enough that holes under V2 
only come by transfer and not thermal excitation. For example, if we have holes 
under V2, simply by exchanging the voltages on V2 and V3 we can move the hole 
to under V3. 

Since the presence or absence of charge is information in binary form, we have 
a way of steering or transferring information. CCDs have also been used to tempo-
rarily store an image. If we had large negative potentials at each Vi, then only 
those Vis, where light was strong enough to create electron–hole pairs, would have 
holes underneath them. The image is digitized and can be stored on a disk, which 
later can be used to view the image through a monitor. 
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Fig. 6.27. Schematic for a charge-coupled device  

Problems 

6.1 For the nondegenerate case where E − μ >> kT, calculate the number of elec-
trons per unit volume in the conduction band from the integral 

 ∫
∞=

cE EEfEDn d)()( . 

D(E) is the density of states, f(E) is the Fermi function. 

6.2 Given the neutrality condition 
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and the definition x = exp(βμ), solve the condition for x. Then solve for n in 
the region kT << Ec − Ed, where n = Ncexp[−β(Ec − μ)]. 

6.3 Derive (6.45). Hint – look at Sect. 8.8 and Appendix 1 of Smith [6.38]. 

6.4 Discuss in some detail the variation with temperature of the position of the 
Fermi energy in a fairly highly donor doped n-type semiconductor. 

6.5 Explain how the junction between two dissimilar metals can act as a rectifier. 

6.6 Discuss the mobility due to the lattice scattering of electrons in silicon or 
germanium. See, for example, Seitz [6.35]. 

6.7 Discuss the scattering of charge carriers in a semiconductor by ionized donors 
or acceptors. See, for example, Conwell and Weisskopf [6.9]. 

6.8 A sample of Si contains 10–4 atomic per cent of phosphorous donors that are 
all singly ionized at room temperature. The electron mobility is 0.15 m2V–1s–1. 
Calculate the extrinsic resistivity of the sample (for Si, atomic weight = 28, 
density = 2300 kg/m3). 

6.9 Derive (6.163) by use of the spatial constancy of the chemical potential. 
 



 

 

7  Magnetism, Magnons, and Magnetic Resonance 

The first chapter was devoted to the solid-state medium (i.e. its crystal structure 
and binding). The next two chapters concerned the two most important types of 
energy excitations in a solid (the electronic excitations and the phonons). 
Magnons are another important type of energy excitation and they occur in mag-
netically ordered solids. However, it is not possible to discuss magnons without 
laying some groundwork for them by discussing the more elementary parts of 
magnetic phenomena. Also, there are many magnetic properties that cannot be 
discussed by using the concept of magnons. In fact, the study of magnetism is 
probably the first solid-state property that was seriously studied, relating as it does 
to lodestone and compass needles. 

Nearly all the magnetic effects in solids arise from electronic phenomena, and 
so it might be thought that we have already covered at least the fundamental prin-
ciples of magnetism. However, we have not yet discussed in detail the electron’s 
spin degree of freedom, and it is this, as well as the orbital angular moment that 
together produce magnetic moments and thus are responsible for most magnetic 
effects in solids. When all is said and done, because of the richness of this subject, 
we will end up with a rather large chapter devoted to magnetism. 

We will begin by briefly surveying some of the larger-scale phenomena associ-
ated with magnetism (diamagnetism, paramagnetism, ferromagnetism, and allied 
topics). These are of great technical importance. We will then show how to under-
stand the origin of ordered magnetic structures from a quantum-mechanical view-
point (in fact, strictly speaking this is the only way to understand it). This will lead 
to a discussion of the Heisenberg Hamiltonian, mean field theory, spin waves and 
magnons (the quanta of spin waves). We will also discuss the behavior of ordered 
magnetic systems near their critical temperature, which turns out also to be in-
credibly rich in ideas. 

Following this we will discuss magnetic domains  and related topics. This is of 
great practical importance. 

Some of the simpler aspects of magnetic resonance will then be discussed as it 
not only has important applications, but magnetic resonance experiments provide 
direct measurements of the very small energy differences between magnetic sub-
levels in solids, and so they can be very sensitive probes into the inner details of 
magnetic solids. 

We will end the chapter with some brief discussion of recent topics: the Kondo 
effect, spin glasses, magnetoelectronics, and solitons. 
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7.1  Types of Magnetism 

7.1.1  Diamagnetism of the Core Electrons (B) 

All matter shows diamagnetic effects, although these effects are often obscured by 
other stronger types of magnetism. In a solid in which the diamagnetic effect pre-
dominates, the solid has an induced magnetic moment that is in the opposite direc-
tion to an external applied magnetic field. 

Since the diamagnetism of conduction electrons (Landau diamagnetism) has al-
ready been discussed (Sect. 3.2.2), this Section will concern itself only with the 
diamagnetism of the core electrons. 

For an external magnetic field H in the z direction, the Hamiltonian (SI, e > 0) 
is given by 
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For purely diamagnetic atoms with zero total angular momentum, the term involv-
ing first derivatives has zero matrix elements and so will be neglected. Thus, with 
a spherically symmetric potential V(r), the one-electron Hamiltonian is 
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Let us evaluate the susceptibility of such a diamagnetic substance. It will be as-
sumed that the eigenvalues of (7.1) (with H = 0) and the eigenkets |n〉 are precisely 
known. Then by first-order perturbation theory, the energy change in state n due 
to the external magnetic field is 
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For simplicity, it will be assumed that |n〉 is spherically symmetric. In this case 
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The induced magnetic moment μ can now be readily evaluated: 
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If N is the number of atoms per unit volume, and Z is the number of core elec-
trons, then the magnetization M is ZNμ, and the magnetic susceptibility χ is 
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If we make an obvious reinterpretation of 〈n|r2|n〉, then this result agrees with the 
classical result [7.39 p. 418]. The derivation of (7.5) assumes that the core elec-
trons do not interact and that they are all in the same state |n〉. For core electrons 
on different atoms noninteraction would appear to be reasonable. However, it is 
not clear that this would lead to reasonable results for core electrons on the same 
atom. A generalization to core atoms in different states is fairly obvious. 

A measurement of the diamagnetic susceptibility, when combined with theory 
(similar to the above), can sometimes provide a good test for any proposed forms 
for the core wave functions. However, if paramagnetic or other effects are present, 
they must first be subtracted out, and this procedure can lead to uncertainty in in-
terpretation. 

In summary, we can make the following statements about diamagnetism: 

1. Every solid has diamagnetism although it may be masked by other magnetic ef-
fects. 

2. The diamagnetic susceptibility (which is negative) is temperature independent 
(assuming we can regard 〈n|r2|n〉 as temperature independent). 

7.1.2  Paramagnetism of Valence Electrons (B) 

This Section is begun by making several comments about paramagnetism: 

1. One form of paramagnetism has already been studied. This is the Pauli para-
magnetism of the free electrons (Sect. 3.2.2). 

2. When discussing paramagnetic effects, in general both the orbital and intrinsic 
spin properties of the electrons must be considered. 

3. A paramagnetic substance has an induced magnetic moment in the same direc-
tion as the applied magnetic field. 

4. When paramagnetic effects are present, they generally are much larger than the 
diamagnetic effects. 

5. At high enough temperatures, all substances appear to behave in either a para-
magnetic fashion or a diamagnetic fashion (even ferromagnetic solids, as we 
will discuss, become paramagnetic above a certain temperature). 

6. The calculation of the paramagnetic susceptibility is a statistical problem, but 
the general reason for paramagnetism is unpaired electrons in unfilled shells of 
electrons. 

7. The study of paramagnetism provides a natural first step for understanding 
ferromagnetism. 

The calculation of a paramagnetic susceptibility will only be outlined. The per-
turbing part of the Hamiltonian is of the form [94], e > 0, 
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where L is the total orbital angular momentum operator, and S is the total spin op-
erator. Using a canonical ensemble, we find the magnetization of a sample to be 
given by 
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where N is the number of atoms per unit volume, μ is the magnetic moment opera-
tor proportional to (L + 2S), and F is the Helmholtz free energy. 

Once (7.7) has been computed, the magnetic susceptibility is easily evaluated 
by means of 

 
H
M

∂
∂

≡χ . (7.8) 

Equations (7.7) and (7.8) are always appropriate for evaluating χ, but the form of 
the Hamiltonian is modified if one wants to include complicated interaction ef-
fects. 

At lower temperatures we expect that interactions such as crystal-field effects 
will become important. Properly including these effects for a specific problem is 
usually a research problem. The effects of crystal fields will be discussed later in 
the chapter. 

Let us consider a particularly simple case of paramagnetism. This is the case of 
a particle with spin S (and no other angular momentum). For a magnetic field in 
the z-direction we can write the Hamiltonian as (charge on electron is e > 0) 

 zS
m
He 2

2
0 ⋅=′ μ

H . (7.9) 

Let us define gμB in such a way that the eigenvalues of (7.9) are 

 SB HMgE 0μμ= , (7.10) 

where μB = e=/2m is the Bohr magneton, and g is sometimes called simply the g-
factor. The use of a g-factor allows our formalism to include orbital effects if nec-
essary. In (7.10) g = 2 (spin only). 

If N is the number of particles per unit volume, then the average magnetization 
can be written as1 
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1 Note that μB has absorbed the = so MS and S are either integers or half-integers. Also note 

(7.11) is invariant to a change of the dummy summation variable from MS to −MS. 
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For high temperatures (and/or weak magnetic fields, so only the first two terms of 
the expansion of the exponential need be retained) we can write 
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which, after some manipulation, becomes to order H 
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2 where peff = g[S(S+1)]1/2 is called the effective magneton number. Equation 
(7.12) is the Curie law. It expresses the (1/T) dependence of the magnetic suscep-
tibility at high temperature. Note that when H → 0, (7.12) is an exact consequence 
of (7.11). 

It is convenient to have an expression for the magnetization of paramagnets 
that is valid at all temperatures and magnetic fields. 

If we define 
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then 
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With a little elementary manipulation, it is possible to perform the sums indicated 
in (7.14): 
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2 A temperature-independent contribution known as van Vleck paramagnetism may also 

be important for some materials at low temperature. It may occur due to the effect of ex-
cited states that can be treated by second-order perturbation theory. It is commonly im-
portant when first-order terms vanish. See Ashcroft and Mermin [7.2 p. 653]. 
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Defining the Brillouin function BJ(y) as 
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we can write the magnetization 〈M〉 as 
 )(SXBNgSM SBμ= . (7.17) 

It is easy to recover the high-temperature results (7.12) from (7.17). All we have 
to do is use 

 1if
3

1)( <<+= yy
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JyBJ . (7.18) 

Then 
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or using (7.13), 
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7.1.3  Ordered Magnetic Systems (B) 

Ferromagnetism and the Weiss Mean Field Theory (B) 

Ferromagnetism refers to solids that are magnetized without an applied magnetic 
field. These solids are said to be spontaneously magnetized. Ferromagnetism oc-
curs when paramagnetic ions in a solid “lock” together in such a way that their 
magnetic moments all point (on the average) in the same direction. At high 
enough temperatures, this “locking” breaks down and ferromagnetic materials be-
come paramagnetic. The temperature at which this transition occurs is called the 
Curie temperature. 

There are two aspects of ferromagnetism. One of these is the description of 
what goes on inside a single magnetized domain (where the magnetic moments 
are all aligned). The other is the description of how domains interact to produce 
the observed magnetic effects such as hysteresis. Domains will be briefly dis-
cussed later (Sect. 7.3). 

We start by considering various magnetic structures without the complication 
of domains. Ferromagnetism, especially ferromagnetism in metals, is still not 
quantitatively and completely understood in all magnetic materials. We will turn 
to a more detailed study of the fundamental origin of ferromagnetism in Sect. 7.2. 
Our aim in this Section is to give a brief survey of the phenomena and of some 
phenomenological ideas. 

In the ferromagnetic state at low temperatures, the spins on the various atoms are 
aligned parallel. There are several other types of ordered magnetic structures. These 
structures order for the same physical reason that ferromagnetic structures do  
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(i.e. because of exchange coupling between the spins as we will discuss in Sect. 7.2). 
They also have more complex domain effects that will not be discussed. 

Examples of elements that show spontaneous magnetism or ferromagnetism are 
(1) transition or iron group elements (e.g. Fe, Ni, Co), (2) rare earth group ele-
ments (e.g. Gd or Dy), and (3) many compounds and alloys. Further examples are 
given in Sect. 7.3.2. 

The Weiss theory is a mean field theory and is perhaps the simplest way of dis-
cussing the appearance of the ferromagnetic state. First, what is mean field the-
ory? Basically, mean field theory is a linearized theory in which the Hamiltonian 
products of operators representing dynamical observables are approximated by re-
placing these products by a dynamical observable times the mean or average value 
of a dynamic observable. The average value is then calculated self-consistently 
from this approximated Hamiltonian. The nature of this approximation is such that 
thermodynamic fluctuations are ignored. Mean field theory is often used to get an 
idea as to what structures or phases are present as the temperature and other pa-
rameters are varied. It is almost universally used as a first approximation, al-
though, as discussed below, it can even be qualitatively wrong (in, for example, 
predicting a phase transition where there is none). 

The Weiss mean field theory does the main thing that we want a theory of the 
magnetic state to do. It predicts a phase transition. Unfortunately, the quantitative 
details of real phase transitions are typically not what the Weiss theory says they 
should be. Still, it has several advantages: 

1. It provides a comprehensive if at times only qualitative description of most 
magnetic materials. The Weiss theory (augmented with the concept of do-
mains) is still the most important theory for a practical discussion of many 
types of magnetic behavior. Many experimental results are still presented 
within the context of this theory, and so in order to read the experimental pa-
pers it is necessary to understand Weiss theory. 

2. It is rigorous for infinite-range interactions between spins (which never occur 
in practice). 

3. The Weiss theory originally postulated a mysterious molecular field that was 
the “real” cause of the ordered magnetic state. This molecular field was later 
given an explanation based on the exchange effects described by the Heisen-
berg Hamiltonian (see Sect. 7.2). The Weiss theory gives a very simple way 
of relating the occurrence of a phase transition to the description of a mag-
netic system by the Heisenberg Hamiltonian. Of course, the way it relates 
these two is only qualitatively correct. However, it is a good starting place for 
more general theories that come closer to describing the behavior of the actual 
magnetic systems.3 

                                                           
3 Perhaps the best simple discussion of the Weiss and related theories is contained in the 

book by J. S. Smart [92], which can be consulted for further details. By using two sublat-
tices, it is possible to give a similar (to that below) description of antiferromagnetism. 
See Sect. 7.1.3. 
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For the case of a simple paramagnet, we have already derived that (see 
Sect. 7.1.2) 

 )(aBNgSM SBμ= , (7.19) 

4 where BS is defined by (7.16) and 

 
kT

HSga B 0μμ≡ . (7.20) 

Recall also high-temperature (7.18) for BS(a) can be used. 
Following a modern version of the original Weiss theory, we will give a quali-

tative description of the occurrence of spontaneous magnetization. Based on the 
concept of the mean or molecular field the spontaneous magnetization must be 
caused by some sort of atomic interaction. Whatever the physical origin of this in-
teraction, it tends to bring about an ordering of the spins. Weiss did not attempt to 
derive the origin of this interaction. In fact, all he did was to postulate the exis-
tence of a molecular field that would tend to align the spins. His basic assumption 
was that the interaction would be taken account of if H (the applied magnetic 
field) were replaced by H + γM, where γM is the molecular field. (γ is called the 
molecular field constant, sometimes the Weiss constant, and has nothing to do 
with the gyromagnetic ratio γ that will be discussed later.) 

Thus the basic equation for ferromagnetic materials is 

 )(aSBNgM SB ′= μ , (7.21) 

where 

 )(0 MH
kT
Sga B γμμ +=′ . (7.22) 

That is, the basic equations of the molecular field theory are the same as the para-
magnetic case plus the H → H + γM replacement. Equations (7.21) and (7.22) are 
really all there is to the molecular field model. We shall derive other results from 
these equations, but already the basic ideas of the theory have been covered. 

Let us now indicate how this predicts a phase transition. By a phase transition, 
we mean that spontaneous magnetization (M ≠ 0 with H = 0) will occur for all 
temperatures below a certain temperature Tc called the ferromagnetic Curie tem-
perature. 

At the Curie temperature, for a consistent solution of (7.21) and (7.22) we re-
quire that the following two equations shall be identical as a′ → 0 and H = 0: 

 )(1 aSBNgM SB ′= μ , ((7.21) again) 

 
0

2 γμμBSg
akTM

′
= , ((7.22) with H → 0). 

                                                           
4 Here e can be treated as |e| and so as usual, μB = |e|=/2m. 
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If these equations are identical, then they must have the same slope as a′ → 0. 
That is, we require 
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Using the known behavior of BS(a′) as a′ → 0, we find that condition (7.23) gives 

 γμμ
k
SSNgT B

c 3
)1( 22

0 += . (7.24) 

Equation (7.24) provides the relationship between the Curie constant Tc and the 
Weiss molecular field constant γ. Note that, as expected, if γ = 0, then Tc = 0 (i.e. 
if γ → 0, there is no phase transition). Further, numerical evaluation shows that if 
T > Tc, (7.21) and (7.22) with H = 0 have a common solution for M only if M = 0. 
However, for T < Tc, numerical evaluation shows that they have a common solu-
tion M ≠ 0, corresponding to the spontaneous magnetization that occurs when the 
molecular field overwhelms thermal effects. 

There is another Curie temperature besides Tc. This is the so-called paramag-
netic Curie temperature θ that enters into the equation for the high-temperature 
behavior of the magnetic susceptibility. Within the context of the Weiss theory, 
these two temperatures turn out to be the same. However, if one makes an experi-
mental determination of Tc (from the transition temperature) and of θ from the 
high-temperature magnetic susceptibility, θ and Tc do not necessarily turn out to 
be identical (See Fig. 7.1). We obtain an explicit expression for θ below. 

For μ0HSgμB/kT << 1 we have (by (7.17) and (7.18)) 
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For ferromagnetic materials we need to make the replacement H → H + γM so 
that M = C′H + C′γM or 
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Substituting the definition of C′, we find that (7.26) gives for the susceptibility 
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Fig. 7.1. Inverse susceptibility χ0

−1 of Ni. [Reprinted with permission from Kouvel JS and 
Fisher ME, Phys Rev 136, A1626 (1964). Copyright 1964 by the American Physical Soci-
ety. Original data from Weiss P and Forrer R, Annales de Physique (Paris), 5, 153 (1926).] 

The Weiss theory gives the same result: 

 γμμθγ 0
2

eff

2
)(

3
p

k
NTC B

c === , (7.28) 

where peff = g[S(S+1)]1/2 is the effective magnetic moment in units of the Bohr 
magneton. Equation (7.27) is valid experimentally only if T >> θ. See Fig. 7.1. 

It may not be apparent that the above discussion has limited validity. We have 
predicted a phase transition, and of course γ can be chosen so that the predicted Tc 
is exactly the experimental Tc. The Weiss prediction of the (T − θ)−1 behavior for χ 
also fits experiment at high enough temperatures. 

However, we shall see that when we begin to look at further details, the Weiss 
theory begins to break down. In order to keep the algebra fairly simple it is con-
venient to absorb some of the constants into the variables and thus define new 
variables. Let us define 

 )(0 MH
kT
gb B γμμ +≡ , (7.29) 

and 

 )(bSB
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, (7.30) 
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which should not be confused with the magnetic moment. 
It is also convenient to define a quantity Jex by 

 2
22

0

ex2 =
BNg

ZJ
μμ

γ = , (7.31) 

where Z is the number of nearest neighbors in the lattice of interest, and Jex is the 
exchange integral. Compare this to (7.95), which is the same. That is, we will see 
that (7.31) makes sense from the discussion of the physical origin of the molecular 
field. 

Finally, let us define 
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00 μμ= , (7.32) 

and 
 cTT /=τ . 

With these definitions, a little manipulation shows that (7.29) is 
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Equations (7.30) and (7.33) can be solved simultaneously for m (which is propor-
tional to the magnetization). With b0 equal to zero (i.e. H = 0) we combine (7.30) 
and (7.33) to give a single equation that determines the spontaneous magnetiza-
tion: 
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A plot similar to that yielded by (7.34) is shown in Fig. 7.16 (H = 0). The fit to 
experiment of the molecular field model is at least qualitative. Some classic re-
sults for Ni by Weiss and Forrer as quoted by Kittel [7.39 p. 448] yield a reasona-
bly good fit. 

We have reached the point where we can look at sufficiently fine details to see 
how the molecular field theory gives predictions that do not agree with experi-
ment. We can see this by looking at the solutions of (7.34) as τ → 0 (i.e. T << Tc) 
and as τ → 1 (i.e. T → Tc). 

We know that for any y that BS(y) is given by (7.16). We also know that 
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Since for large X 

 XeX 221coth −+≅ , 
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we can say that for large y 
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Therefore by (7.34), m can be written for T → 0 as 
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By iteration, it is clear that m = 1 can be used in the exponentials. Further, 
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so that the second term can be neglected for all S ≠ 0 (for S = 0 we do not have 
ferromagnetism anyway). Thus at lower temperature, we finally find 
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Experiment does not agree well with (7.38). For many materials, experiment 
agrees with 

 2/31 CTm −≅ , (7.39) 

where C is a constant. As we will see in Sect. 7.2, (7.39) is correctly predicted by 
spin wave theory. 

It also turns out that the Weiss molecular field theory disagrees with experi-
ment at temperatures just below the Curie temperature. By making a Taylor series 
expansion, one can show that for y << 1, 
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Combining (7.40) with (7.34), we find that 

 2/1)( TTKm c −= , (7.41) 

and 
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. (7.42) 

Equations (7.41) and (7.42) agree only qualitatively with experiment. For many 
materials, experiment predicts that just below the Curie temperature 

 3/1)( TTAm c −≅ . (7.43) 
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Perhaps the most dramatic failure of the Weiss molecular field theory occurs when 
we consider the specific heat. As we will see, the Weiss theory flatly predicts that 
the specific heat (with no external field) should vanish for temperatures above the 
Curie temperature. Experiment, however, says nothing of the sort. There is a small 
residual specific heat above the Curie temperature. This specific heat drops off 
with temperature. The reason for this failure of the Weiss theory is the neglect of 
short-range ordering above the Curie temperature. 

Let us now look at the behavior of the Weiss predictions for the magnetic spe-
cific heat in a little more detail. The energy of a spin in a γM field in the z direc-
tion due to the molecular field is 

 MSgE iz
B

i γμμ
=

0= . (7.44) 

Thus the internal energy U obtained by averaging Ei for N spins is, 
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where the factor 1/2 comes from the fact that we do not want to count bonds 
twice, and M = −NgμB〈Siz〉/= has been used. 

The specific heat in zero magnetic field is then given by 
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For T > Tc, M = 0 (with no external magnetic field) and so the specific heat van-
ishes, which contradicts experiment. 

The precise behavior of the magnetic specific heat just above the Curie tem-
perature is of more than passing interest. Experimental results suggest that the 
specific heat should exhibit a logarithmic singularity or near logarithmic singular-
ity as T → Tc. The Weiss theory is inadequate even to begin attacking this prob-
lem. 

Antiferromagnetism, Ferrimagnetism, and Other Types  
of Magnetic Order (B) 

Antiferromagnetism is similar to ferromagnetism except that the lowest-energy 
state involves adjacent spins that are antiparallel rather than parallel (but see the 
end of this section). As we will see, the reason for this is a change in sign (com-
pared to ferromagnetism) for the coupling parameter or exchange integral. 

Ferrimagnetism is similar to antiferromagnetism except that the paired spins do 
not cancel and thus the lowest-energy state has a net spin. 

Examples of antiferromagnetic substances are FeO and MnO. Further examples 
are given in Sect. 7.3.2. The temperature at which an antiferromagnetic substance 
becomes paramagnetic is known as the Néel temperature. 

Examples of ferrimagnetism are MnFe2O4 and NiFe2O7. Further examples are 
also given in Sect. 7.3.2. 
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We now discuss these in more detail by use of mean field theory.5 We assume 
near-neighbor and next-nearest-neighbor coupling as shown schematically in 
Fig. 7.2. The figure is drawn for an assumed ferrimagnetic order below the transi-
tion temperature. A and B represent two sublattices with spins SA and SB. The cou-
pling is represented by the exchange integrals J (we assume JBA = JAB < 0 and 
these J dominate JAA and JBB > 0). Thus we assume the effective field between A 
and B has a negative sign. For the effective field we write: 

 BMMB AABA ++−= 00 μαωμ , (7.47) 

 BMMB BBAB ++−= 00 μβωμ , (7.48) 

where ω > 0 is a constant proportional to |JAB| = |JBA|, while αA and βB are con-
stants proportional to JAA and JBB. The M represent magnetization and B is the ex-
ternal field (that is the magnetic induction B = μ0Hexternal). 

  B  B  B  B

 A  A  A  A

  JBB JBA = JAB   JAA 

• • • • • •

 
Fig. 7.2. Schematic to represent ferrimagnets 

By the mean field approximation with BSA and BSB being the appropriate Bril-
louin functions (defined by (7.16)): 

 )( AABASBAAAA BSgBSgNM A μβμ= , (7.49) 

 )( BBBBSBBBBB BSgBSgNM B μβμ= . (7.50) 

The SA, SB are quantum numbers (e.g. 1, 3/2, etc., labeling the spin). We also will 
use the result (7.40) for BS(x) with x << 1. In the above, Ni is the number of ions of 
type i per unit volume, gA and gB are the Lande g-factors (note we are using B not 
μ0H), μB is the Bohr magneton and β = 1/(kBT). 

Defining the Curie constants 
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5 See also, e.g., Kittel [7.39 p458ff]. 
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we have if BA/T and BB/T are small: 
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This holds above the ordering temperature when B → 0 and even just below the 
ordering temperature provided B → 0 and MA, MB are very small. Thus the equa-
tions determining the magnetization become: 

 BCMCMCT ABAAAA =+− 00 )( ωμμα , (7.55) 

 BCMCTMC BBBBAB =−+ )( 00 μβωμ . (7.56) 

If the external field B → 0, we can have nonzero (but very small) solutions for 
MA, MB provided 
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The critical temperature is chosen so Tc = ωμ0(CACB)1/2 when αA → βB → 0, and so 
Tc = Tc

+. Above Tc for B ≠ 0 (and small) with 
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The reciprocal magnetic susceptibility is then given by 
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Since D is quadratic in T, 1/χ is linear in T only at high temperatures (ferrimagnet-
ism). Also note 

 cTTT === +
cat01

χ
. 

In the special case where two sublattices are identical (and ω > 0), since CA = 
CB ≡ C1 and αA = βB ≡ α1, 

 011 )( μωα CTc +=+ , (7.60) 
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and after canceling, 
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which is linear in T (antiferromagnetism). 
This equation is valid for T > Tc

+ = μ0(α1+ω)C1 ≡ TN, the Néel temperature. 
Thus, if we define 
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Note: 
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We can also easily derive results for the ferromagnetic case. We choose to drop 
out one sublattice and in effect double the effect of the other to be consistent with 
previous work. 
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The paramagnetic case is obtained from neglecting the coupling so 

 
T

C 012 μχ = . (7.64) 

The reality of antiferromagnetism has been absolutely determined by neutron dif-
fraction that shows the appearance of magnetic order below the critical tempera-
ture. See Fig. 7.3 and Fig. 7.4. Figure 7.5 summarizes our results. 

                                                           
6 2C1μ0 = C of (7.27). 
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Fig. 7.3. Neutron-diffraction patterns of MnO at 80 K and 293 K. The Curie temperature is 
120 K. The low-temperature pattern has extra antiferromagnetic reflections for a magnetic 
unit twice that of the chemical unit cell. From Bacon GE, Neutron Diffraction, Oxford at 
the Clarendon Press, London, 1962 2nd edn, Fig. 142 p.297. By permission of Oxford Uni-
versity Press. Original data from Shull CG and Smart JS, Phys Rev, 76, 1256 (1949) 

 
Fig. 7.4. Neutron-diffraction patterns for α-manganese at 20 K and 295 K. Note the anti-
ferromagnetic reflections at the lower temperature. From Bacon GE, Neutron Diffraction, 
Oxford at the Clarendon Press, London, 1962 2nd edn, Fig. 129 p.277. By permission of 
Oxford University Press. Original data from Shull CG and Wilkinson MK, Rev Mod Phys, 
25, 100 (1953) 
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Antiferromagnet 
slope = (2μ0C1)–1

Paramagnet 
slope = (2μ0C1)–1

Ferromagnet 
slope = (2μ0C1)–1

Ferrimagnet 
Asymptotic 
slope = [μ0(CA + CB)]–1 

μ0C1(ω – α1) 
Tc = (μ0/2) {αACA+βBCB 
                  +[4ω2CACB+(αACA – βBCB)2]1/2} 

Tc = 2μ0α1C1

TN = μ0(α1+ω)C1

χ–1|B = 0 

 
Fig. 7.5. Schematic plot of reciprocal magnetic susceptibility. Note the constants for the 
various cases can vary. For example α1 could be negative for the antiferromagnetic case 
and αA, βB could be negative for the ferrimagnetic case. This would shift the zero of χ–1 

The above definitions of antiferromagnetism and ferrimagnetism are the old 
definitions (due to Néel). In recent years it has been found useful to generalize 
these definitions somewhat. Antiferromagnetism has been generalized to include 
solids with more than two sublattices and to include materials that have triangular, 
helical or spiral, or canted spin ordering (which may not quite have a net zero 
magnetic moment). Similarly, ferrimagnetism has been generalized to include sol-
ids with more than two sublattices and with spin ordering that may be, for exam-
ple, triangular or helical or spiral. For ferrimagnetism, however, we are definitely 
concerned with the case of nonvanishing magnetic moment. 

It is also interesting to mention a remarkable theorem of Bohr and Van Leeu-
wen [94]. This theorem states that for classical, nonrelativistic electrons for all fi-
nite temperatures and applied electric and magnetic fields, the net magnetization 
of a collection of electrons in thermal equilibrium vanishes. This is basically due 
to the fact that the paramagnetic and diamagnetic terms exactly cancel one another 
on a classical and statistical basis. Of course, if one cleverly makes omissions, one 
can discuss magnetism on a classical basis. The theorem does tell us that if we 
really want to understand magnetism, then we had better learn quantum mechan-
ics. See Problem 7.17. 

It might be well to learn relativity also. Relativity tells us that the distinction 
between electric and magnetic fields is just a distinction between reference 
frames. 
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7.2  Origin and Consequences of Magnetic Order 

7.2.1  Heisenberg Hamiltonian 

The Heitler–London Method (B) 

In this Section we develop the Heisenberg Hamiltonian and then relate our results 
to various aspects of the magnetic state. The first method that will be discussed is 
the Heitler–London method. This discussion will have at least two applications. 
First, it helps us to understand the covalent bond, and so relates to our previous 
discussion of valence crystals. Second, the discussion gives us a qualitative under-
standing of the Heisenberg Hamiltonian. This Hamiltonian is often used to explain 
the properties of coupled spin systems. The Heisenberg Hamiltonian will be used 
in the discussion of magnons. Finally, as we will show, the Heisenberg Hamilto-
nian is useful in showing how an electrostatic exchange interaction approximately 
predicts the existence of a molecular field and hence gives a fundamental qualita-
tive explanation of the existence of ferromagnetism. 

Let a and b label two hydrogen atoms separated by R (see Fig. 7.6). Let the 
separated (R → ∞) hydrogen atoms be described by the Hamiltonians 

 

a bR

1 2r12

ra1 rb2

rb1 ra2

nuclei

electrons

 
Fig. 7.6. Model for two hydrogen atoms 
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and 
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Let ψa(1) and ψb(2) be the spatial ground-state wave functions, that is 

 )1()1( 00 aa
a E ψψ =H , (7.67) 

or 

 )2()2( 00 bb
b E ψψ =H , 
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where E0 is the ground-state energy of the hydrogen atom. The zeroth-order hy-
drogen molecular wave functions may be written 

 )1()2()2()1( baba ψψψψψ ±=± . (7.68) 

In the Heitler–London approximation for un-normalized wave functions 
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where dτi = dxidyidzi and we have used that wave functions for stationary states 
can be chosen to be real. In (7.69), 
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Working out the details when (7.68) is put into (7.69) and assuming ψa(1) and 
ψb(2) are normalized we find 
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where 

 ∫= 21dd)2()2()1()1( ττψψψψ babaS  (7.72) 

is the overlap integral, 
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is the Coulomb energy of interaction, and 
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is the exchange energy. In (7.73) and (7.74), 
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The corresponding normalized eigenvectors are 
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, (7.76) 
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where 

 )2()1()2,1(1 ba ψψψ = , (7.77) 

 )1()2()2,1(2 ba ψψψ = . (7.78) 

So far there has been no need to discuss spin, as the Hamiltonian did not ex-
plicitly involve it. However, it is easy to see how spin enters. ψ+ is a symmetric 
function in the interchange of coordinates 1 and 2, and ψ− is an antisymmetric 
function in the interchange of coordinates 1 and 2. The total wave function that 
includes both space and spin coordinates must be antisymmetric in the interchange 
of all coordinates. Thus in the total wave function, an antisymmetric function of 
spin must multiply ψ+, and a symmetric function of spin must multiply ψ−. If we 
denote α(i) as the “spin-up” wave function of electron i and β(j) as the “spin-
down” wave function of electron j, then the total wave functions can be written as 
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Equation (7.79) has total spin equal to zero, and is said to be a singlet state. It cor-
responds to antiparallel spins. Equation (7.80) has total spin equal to one (with 
three projections of +1, 0, −1) and is said to describe a triplet state. This corre-
sponds to parallel spins. For hydrogen atoms, J in (7.74) is called the exchange in-
tegral and is negative. Thus E+ (corresponding to ψT

+ ) is lower in energy than E− 
(corresponding to ψT

− ), and hence the singlet state is lowest in energy. A calcula-
tion of E± − E0 for E0 labeling the ground state of hydrogen is sketched in Fig. 7.7. 
Let us now pursue this two-spin case in order to write an effective spin Hamilto-
nian that describes the situation. Let Sl and S2 be the spin operators for particles 1 
and 2. Then 

 21
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2
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2
21 2)( SSSSSS ⋅++=+ . (7.81) 

Since the eigenvalues of S2
1  and S2

2  are 3=2/4 we can write for appropriate φ in the 
space of interest 
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21 =−+= SSSS ⋅ . (7.82) 

In the triplet (or parallel spin) state, the eigenvalue of (Sl + S2)2 is 2=2, so 
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4
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triplet21 φφ ==SS ⋅ . (7.83) 
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0 2 4

Antiparallel electron spins ↑↓

Parallel electron spins ↑↑

R
R0

Energy – 2E0

 
Fig. 7.7. Sketch of results of the Heitler–London theory applied to two hydrogen atoms 
(R/R0 is the distance between the two atoms in Bohr radii). See also, e.g., Heitler [7.26]. 

In the singlet (or antiparallel spin) state, the eigenvalue of (Sl + S2)2 is 0, so 

 singlet
2

4
3

singlet21 φφ =−=SS ⋅ . (7.84) 

Comparing these results to Fig. 7.7, we see we can formally write an effective 
spin Hamiltonian for the two electrons on the two different atoms: 

 212 SS ⋅J−=H , (7.85) 

where J is often simply called the exchange constant and J = J(R), i.e. it depends 
on the separation R between atoms. By suitable choice of J(R), the eigenvalues of 
H − 2E0 can reproduce the curves of Fig. 7.7. Note that J > 0 gives the parallel-
spin case the lowest energy (ferromagnetism) and J < 0 (the two-hydrogen-atom 
case – this does not always happen, especially in a solid) gives the antiparallel-
spin case the lowest energy (antiferromagnetism). If we have many atoms on a lat-
tice, and if there is an exchange coupling between the spins of the atoms, we as-
sume that we can write a Hamiltonian: 

 
                       )(electrons

 
, ,∑ ′−= βα βαβα SS ⋅JH . (7.86) 
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If there are several electrons on the same atom and if J is constant for all electrons 
on the same atom, then we assume we can write 
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where Sk
T and Sl

T refer to the spin operators associated with atoms k and l. Since 
∑′ Sα·SβJαβ differs from ∑ Sα·SβJαβ by only a constant and ∑′k,l JklSk

T Sl
T differs 

from ∑k,l JklSk
T Sl

T by only a constant, we can write the effective spin Hamiltonian 
as 

 ∑ ′−=  
, ,lk

T
l

T
klkJ SS ⋅H , (7.88) 

here unimportant constants have not been retained. This last expression is called 
the Heisenberg Hamiltonian for a system of interacting spins in the absence of an 
external field. 

This form of the Heisenberg Hamiltonian already tells us two important things: 

1. It is applicable to atoms with arbitrary spin. 

2. Closed shells contribute nothing to the Heisenberg Hamiltonian because the 
spin is zero for a closed shell. 

Our development of the Heisenberg Hamiltonian has glossed over the ap-
proximations that were made. Let us now return to them. The first obvious ap-
proximation was made in going from the two-spin case to the N-spin case. The 
presence of a third atom can and does affect the interaction between the original 
pair. In addition, we assumed that the exchange interaction between all electrons 
on the same atom was a constant. 

Another difficulty with the extension of the Heitler–London method to the n-
electron problem is the so-called “overlap catastrophe.” This will not be discussed 
here as we apparently do not have to worry about it when using the simple 
Heisenberg theory for insulators.7 There are also no provisions in the Heisenberg 
Hamiltonian for crystalline anisotropy, which must be present in any real crystal. 
We will discuss this concept in Sects. 7.2.2 and 7.3.1. However, so far as energy 
goes, the Heisenberg model does seem to contain the main contributions. 

But there are also several approximations made in the Heitler–London theory 
itself. The first of these assumptions is that the wave functions associated with the 
electrons of interest are well-localized wave functions. Thus we expect the 
Heisenberg Hamiltonian to be more nearly valid in insulators than in metals. The 
assumption is necessary in order that the perturbation approach used in the Heit-
ler–London method will be valid. It is also assumed that the electrons are in non-
degenerate orbital states and that the excited states can be neglected. This makes it 

                                                           
7 For a discussion of this point see the article by Keffer, [7.37]. 
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harder to see what to do in states that are not “spin only” states, i.e. in states in 
which the total orbital angular momentum L is not zero or is not quenched. 
Quenching of angular momentum means that the expectation value of L (but not 
L2) for electrons of interest is zero when the atom is in the solid. For the nonspin 
only case, we have orbital degeneracy (plus the effects of crystal fields) and thus 
the basic assumptions of the simple Heitler–London method are not met. 

The Heitler–London theory does, however, indicate one useful approximation: 
that J=2 is of the same order of magnitude as the electrostatic interaction energy 
between two atoms and that this interaction depends on the overlap of the wave 
functions of the atoms. Since the overlap seems to die out exponentially, we ex-
pect the direct exchange interaction between any two atoms to be of rather short 
range. (Certain indirect exchange effects due to the presence of a third atom may 
extend the range somewhat and in practice these indirect exchange effects may be 
very important. Indirect exchange can also occur by means of the conduction elec-
trons in metals, as discussed later.) 

Before discussing further the question of the applicability of the Heisenberg 
model, it is useful to get a physical picture of why we expect the spin-dependent 
energy that it predicts. In considering the case of two interacting hydrogen atoms, 
we found that we had a parallel spin case and an antiparallel spin case. By the 
Pauli principle, the parallel spin case requires an antisymmetric spatial wave func-
tion, whereas the antiparallel case requires a symmetric spatial wave function. The 
antisymmetric case concentrates less charge in the region between atoms and 
hence the electrostatic potential energy of the electrons (e2/4πε0r) is smaller. How-
ever, the antisymmetric case causes the electronic wave function to “wiggle” more 
and hence raises the kinetic energy T (Top ∝ ∇2). In the usual situation (in the two-
hydrogen-atom case and in the much more complicated case of many insulating 
solids) the kinetic energy increase dominates the potential energy decrease; hence 
the antiparallel spin case has the lowest energy and we have antiferromagnetism (J 
< 0). In exceptional cases, the potential energy decrease can dominate the kinetic 
energy increases, and hence the parallel spin case has the least energy and we 
have ferromagnetism (J > 0). In fact, most insulators that have an ordered mag-
netic state become antiferromagnets at low enough temperature. 

Few rigorous results exist that would tend either to prove or disprove the valid-
ity of the Heisenberg Hamiltonian for an actual physical situation. This is one rea-
son for doing calculations based on the Heisenberg model that are of sufficient ac-
curacy to yield results that can usefully be compared to experiment. Dirac8 has 
given an explicit proof of the Heisenberg model in a situation that is oversimpli-
fied to the point of not being physical. Dirac assumes that each of the electrons is 
confined to a different specified orthogonal orbital. He also assumes that these or-
bitals can be thought of as being localizable. It is clear that this is never the situa-
tion in a real solid. Despite the lack of rigor, the Heisenberg Hamiltonian appears 
to be a good starting place for any theory that is to be used to explain experimental 
magnetic phenomena in insulators. The situation in metals is more complex. 

                                                           
8 See, for example, Anderson [7.1]. 
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Another side issue is whether the exchange “constants” that work well above 
the Curie temperature also work well below the Curie temperature. Since the de-
velopment of the Heisenberg Hamiltonian was only phenomenological, this is  
a sensible question to ask. It is particularly sensible since J depends on R and R 
increases as the temperature is increased (by thermal expansion). Charap and 
Boyd9 and Wojtowicz10 have shown for EuS (which is one of the few “ideal” 
Heisenberg ferromagnets) that the same set of J will fit both the low-temperature 
specific heat and magnetization and the high-temperature specific heat. 

We have made many approximations in developing the Heisenberg Hamilto-
nian. The use of the Heitler–London method is itself an approximation. But there 
are other ways of understanding the binding of the hydrogen atoms and hence of 
developing the Heisenberg Hamiltonian. The Hund–Mulliken11 method is one of 
these techniques. The Hund–Mulliken method should work for smaller R, whereas 
the Heitler–London works for larger R. However, they both qualitatively lead to  
a Heisenberg Hamiltonian. 

We should also mention the Ising model, where H = −∑Jijσizσjz, and the σ are 
the Pauli spin matrices. Only nearest-neighbor coupling is commonly used. This 
model has been solved exactly in two dimensions (see Huang [7.32 p341ff]). The 
Ising model has spawned a huge number of calculations. 

The Heisenberg Hamiltonian and its Relationship to the Weiss Mean 
Field Theory (B) 

We now show how the mean molecular field arises from the Heisenberg Hamilto-
nian. If we assume a mean field γM then the interaction energy of moment μk with 
this field is 
 kkE μM ⋅−= γμ0 . (7.89) 

Also from the Heisenberg Hamiltonian 

 ∑∑ ′′ ⋅−⋅−=   
j jkkji kiikk JJE SSSS , 

and since Jij = Jji, and noting that j is a dummy summation variable 

 ∑ ′ ⋅−=  2 i kiikk JE SS . (7.90) 

                                                           
9 See [7.10]. 
10 See Wojtowicz [7.70]. 
11 See Patterson [7.53 p176ff]. 
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In the spirit of the mean-field approximation we replace Si by its average S̄  i = S 
since the average of each site is the same. Further, we assume only nearest-
neighbor interactions so Jik = J for each of the Z nearest neighbors. So 
 kk ZJE SS ⋅−≅ 2 . (7.91) 

But 
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g Sμμ −≅  (7.92) 

(with μB = |e|=/2m), and the magnetization M is  
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SM BNgμ−≅ , (7.93) 

where N is the number of atomic moments per unit volume (≡ 1/Ω, where Ω is the 
atomic volume). Thus we can also write 
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Comparing (7.89) and (7.94) 
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This not only shows how Heisenberg’s theory “explains” the Weiss mean molecu-
lar field, but also gives an approximate way of evaluating the parameter J. Slight 
modifications in (7.95) result for other than nearest-neighbor interactions. 

RKKY Interaction12 (A) 

The Ruderman, Kittel, Kasuya, Yosida, (RKKY) interaction is important for rare 
earths. It is an interaction between the conduction electrons with the localized 
moments associated with the 4f electrons. Since the spins cause the localized mo-
ments, the conduction electrons can mediate an indirect exchange interaction be-
tween the spins. This interaction is called RKKY interaction. 

We assume, following previous work, that the total exchange interaction is of 
the form 

 ∑ −−= α αα,
Total
ex )(i iixJ SSRr ⋅H , (7.96) 

                                                           
12 Kittel [60, pp 360-366] and White [7.68 pp 197-200]. 
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where Sα is an ion spin and Si is the conduction spin. For convenience we assume 
the S are dimensionless with = absorbed in the J. We assume Jx(ri − Rα) is short 
range (the size of 4f orbitals) and define 

 ∫ −= rRr d)( αxJJ . (7.97) 

Consistent with (7.97), we assume 

 )()( rRr δα JJ ix =− , (7.98) 

where r = ri − Rα and write 

 )(rSS δα iex J ⋅−=H  

for the exchange interaction between the ion α and the conduction electron. This is 
the same form as the Fermi contact term, but the physical basis is different. We 
can regard Siδ(r) = Si(r) as the electronic conduction spin density. Now, the inter-
action between the ion spin Sα and the conduction spin Si can be written (gaussian 
units, μ0 = 1) 

 )()()( eff rSrSS HgJ iBi ⋅⋅ μδα −−=− , 

so this defines an effective field 
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The Fourier component of the effective field can be written 
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We can now determine the magnetization induced by the effective field by use of 
the magnetic susceptibility. In Fourier space 

 
)(
)()(

qH
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This gives us the response in magnetization of a free-electron gas to a magnetic 
field. It turns out that this response (at T = 0) is functionally just like the response 
to an electric field (see Sect. 9.5.3 where Friedel oscillation in the screening of  
a point charge is discussed). 

We find 
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where N/V is the number of electrons per unit volume and 
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The magnetization M(r) of the conduction electrons can now be calculated from 
(7.101), (7.102), and (7.103). 
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With the aid of (7.102) and (7.103), we can evaluate (7.104) to find 
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and 
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The localized moment Sα causes conduction spins to develop an oscillating polari-
zation in the vicinity of it. The spin-density oscillations have the same form as the 
charge-density oscillations that result when an electron gas screens a charged im-
purity.13 

Let us define 

 4
cossin)(

x
xxxxF −= , 

so 

 )2(2)( 4 rkFrG F= . 

F(x) is the basic function that describes spatial oscillating polarization induced by 
a localized moment in its vicinity. It is sketched in Fig. 7.8. Note as x → ∞, F(x) 
→ –cos(x)/x3 and as x → 0, F(x) → 1/(3x). 
                                                           
13 See Langer and Vosko [7.42]. 
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Fig. 7.8. Sketch of F(x) = [sin(x) – x cos(x)]/x4, which describes the RKKY exchange inter-
action 

Using (7.105), if S(r) is the spin density, 
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Another localized ionic spin at Sβ interacts with S(r) 

 )(indirect
 and βαββα rrS −−= SJ ⋅H . 

Now, summing over all α, β interactions and being careful to avoid double count-
ing spins, we have 

 ∑−= βα βααβ,2
1 SS ⋅JRKKYH , (7.109) 

where 
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For strong spin-orbit coupling, it would be more natural to express the Hamilto-
nian in terms of J (the total angular momentum) rather than S. J = L + S and 
within the set of states of constant J, gJ is defined so 
 )()2( SJSLJ +=+= BBBJg μμμ , 

where remember the g factor for L is 1, while for spin S it is 2. Thus, we write 
 SJ =− )1( Jg . 

If Jα is the total angular momentum associated with site α, by substitution 

 ∑−−= βα βααβ,
2)1(

2
1 JJ ⋅JgJRKKYH , (7.111) 

where (gJ − 1)2 is called the deGennes factor. 
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Magnetic Structure and Mean Field Theory (A) 

We assume the Heisenberg Hamiltonian where the lattice is assumed to have tran-
sitional symmetry, R labels the lattice sites, J(0) = 0, J(R − R′) = J(R′ − R). We 
wish to investigate the ground state of a Heisenberg-coupled classical spin system, 
and for simplicity, we will assume: 

a. T = 0 K 
b. The spins can be treated classically 
c. A one-dimensional structure (say in the z direction), and 
d. The SR are confined to the (x,y)-plane 

 RxR SS ϕcos= , RyR SS ϕsin= . 

 Thus, the Heisenberg Hamiltonian can be written: 

 ∑ ′ ′−′−−= RR JS,
2 )cos()(

2
1

RRRR ϕϕH . 

e. We are going to further consider the possibility that the spins will have a con-
stant turn angle of qa (between each spin), so φR = qR, and for adjacent spins 
ΔφR = qΔR = qa. 

Substituting (in the Hamiltonian above), we find 

 )(
2

2
qJNS−=H , (7.112) 

where 

 ∑= R
qRRJqJ ie)()(  (7.113) 

and J(q) = J(−q). Thus, the problem of finding Hmin reduces to the problem of 
finding J(q)max. 

 

R

aa

φR

z

x

y  
Fig. 7.9. Graphical depiction of the classical spin system assumptions 
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 q = 0,          get ferromagnetism, 
q = π/a,       get antiferromagnetism, 
qa ≠ 0 or π, get heliomagnetism with qa 

defining the turn angles. 

 
Note if J(q) → max for 
 

 
It may be best to give an example. We suppose that J(a) = J1, J(2a) = J2 and the 
rest are zero. Using (7.113) we find: 

 )2cos(2)cos(2)( 21 qaJqaJqJ += . (7.114) 

For a minimum of energy [maximum J(q)] we require 

 
a

qqaJJ
q
J πor  0or)cos(40 21 =−=→=

∂
∂ , 

and 

 )2cos(4)cos(or0 212

2
qaJqaJ

q
J −><

∂
∂ . 

The three cases give: 
q = 0 q = π/a q ≠ 0, π/a 
J1 > −4J2 
Ferromagnetism 
e.g. J1 > 0, J2 = 0  

J1 < 4J2 
Antiferromagnetism 
e.g. J1 < 0, J2 = 0 

Turn angle qa defined by 
cos(qa) = −J1/4J2 and 
J1cos(qa) > −4J2cos(2qa) 

7.2.2  Magnetic Anisotropy and Magnetostatic Interactions (A) 

Anisotropy 

Exchange interactions drive the spins to lock together at low temperature into an 
ordered state, but often the exchange interaction is isotropic. So, the question 
arises as to why the solid magnetizes in a particular direction. The answer is that 
other interactions are active that lock in the magnetization direction. These inter-
actions cause magnetic anisotropy. 

Anisotropy can be caused by different mechanisms. In rare earths, because of 
the strong-spin orbit coupling, magnetic moments arise from both spin and orbital 
motion of electrons. Anisotropy, then, can be caused by direct coupling between 
the orbit and lattice. 

There is a different situation in the iron group magnetic materials. Here we 
think of the spins of the 3d electrons as causing ferromagnetism. However, the 
spins are not directly coupled to the lattice. Anisotropy arises because the orbit 
“feels” the lattice, and the spins are coupled to the orbit by the spin-orbit coupling. 

Let us first discuss the rare earths, which are perhaps the easier of the two to 
understand. As mentioned, the anisotropy comes from a direct coupling between 
the crystalline field and the electrons. In this connection, it is useful to consider 
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the classical multipole expansion for the energy of a charge distribution in a po-
tential Φ. The first three terms are given below: 

 
,

0

1(0) (0)  higher-order terms.
6

j
iji j

i

E
u q Q

x
∂⎛ ⎞

= Φ − − +⎜ ⎟∂⎝ ⎠
∑p E⋅  (7.115) 

Here, q is the total charge, p is the dipole moment, Qij is the quadrupole moment, 
and the electric field is E = −∇Φ. For charge distributions arising from states with 
definite parity, p = 0. (We assume this, or equivalently we assume the parity op-
erator commutes with the Hamiltonian.) Since the term qΦ(0) is an additive con-
stant, and since p = 0, the first term that merits consideration is the quadrupole 
term. The quadrupole term describes the interaction of the quadrupole moment 
with the gradient of the electric field. Generally, the quadrupole moments will 
vary with |J, M〉 (J = total angular momentum quantum number and M refers to 
the z component), which will enable us to construct an effective Hamiltonian. This 
Hamiltonian will include the anisotropy in which different states within a mani-
fold of constant J will have different energies, hence anisotropy. We now develop 
this idea in quantum mechanics below. 

We suppose the crystal field is caused by an array of charges described by 
ρ(R). Then, the potential energy of −e at the point ri is given by 

 ∫ −
−=

Rr
RRr

i
i

eV
04

d)()(
πε
ρ . (7.116) 

If we further suppose ρ(R) is outside the ion in question, then in the region of the 
ion, V(r) is a solution of the Laplace equation, and we can expand it as a solution 
of this equation: 

 ∑= ml
m

l
lm

li YrBV , ),()( φθr , (7.117) 

where the constants Bl
m can be computed from ρ(R). For rare earths, the effects of 

the crystal field, typically, can be adequately calculated in first-order perturbation 
theory. Let |v〉 be all states |J, M〉, which are formed of fixed J manifolds from 
|l, m〉, and |s, ms〉 where l = 3 for 4f electrons. The type of matrix element that we 
need to evaluate can be written: 

 vVv i i ′∑ )(r , (7.118) 

summing over the 4f electrons. By (7.117), this eventually means we will have to 
evaluate matrix elements of the form 

 i
m

li mlYlm ′′
′ , (7.119) 

and since l = 3 for 4f electrons, this must vanish if l′ > 6. Also, the parity of the 
functions in (7.119) is (−)2l+l′ the matrix element must vanish if l′ is odd since 
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2l = 6, and the integral over all space is of an odd parity function is zero. For 4f 
electrons, we can write 

 ∑ ∑=′ ′
′

′
′′

′= 6

)(
0 ),()(

even
l m

m
l

lm
li YrBV φθr . (7.120) 

We define the effective Hamiltonian as 

 only integrals radial doing)(∑= i iA V rH . 

If we then apply the Wigner–Eckhart theorem [7.68 p33], in which one replaces 
(x′/r), etc. by their operator equivalents Jx, etc., we find for hexagonal symmetry 

 )(,)( 66
4

6
3

4
2

2
1 yxzzzA iJJJJJKJKJKJK ±=++++= ±−+H . (7.121) 

We now discuss the anisotropy that is appropriate to the iron group [7.68 p57]. 
This is called single-ion anisotropy. Under the action of a crystalline field we will 
assume the relevant atomic states include a ground state (G) of energy ε0 and ap-
propriate excited (E) states of energy ε0 + Δ. We will consider only one excited 
state, although in reality there would be several. We assume |G〉 and |E〉 are sepa-
rated by energy Δ. 

The states |G〉 and |E〉 are assumed to be spatial functions only and not spin 
functions. In our argument, we will carry the spin S along as a classical vector. 
The argument we will give is equivalent to perturbation theory. 

We assume a spin-orbit interaction of the form V = λL⋅S, which mixes some of 
the excited state into the ground state to produce a new ground state. 

 EaGGG T +=→ , (7.122) 

where a is in general complex. We further assume 〈G|G〉 = 〈E|E〉 = 1 and 〈E|G〉 = 0 
so 〈GT|GT〉 = 1 to O(a). Also note the probability that |E〉 is contained in |GT〉 is 
|a|2. The increase in energy due to the mixture of the excited state is (after some 
algebra) 

 ,
1

0201 εεε −
+

++
=−=

a

GaEHGaE
GG

GHG

TT

TT  

or 

 Δ2
1 a=ε . (7.123) 

In addition, due to first-order perturbation theory, the spin-orbit interaction will 
cause a change in energy given by 

 SL ⋅TT GGλε =2 . (7.124) 

We assume the angular momentum L is quenched in the original ground state so 
by definition 〈G|L|G〉 = 0. (See also White, [7.68 p43]. White explains that if  
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a crystal field removes the orbital degeneracy, then the matrix element of L must 
be zero. This does not mean the matrix element of L2 in the same state is zero.) 
Thus to first order in a, 

 SLSL ⋅⋅ EGaGEa λλε += *
2 . (7.125) 

The total change in energy given by (7.123) and (7.125) is ε = ε1 + ε2. Since a and 
a* are complex with two components we can treat them as linearly independent, so 
∂ε/∂a* = 0, which gives 

 
Δ

SL ⋅GE
a

λ−
= . 

Therefore, after some algebra ε = ε1 + ε2 becomes 

 0
Δ

Δ
2

2 <
−

=−=
SL ⋅GE

a
λ

ε , 

a decrease in energy. If we let 

 
Δ

=
GE L

A
λ

, 

then 

 ∑−=−= νμ νμνμε ,
* SBSSSAA ⋅ , 

where Bμν = AμAν
*. If we let S become a spin operator, we get the following Ham-

iltonian for single-ion anisotropy: 

 ∑−= νμ νμνμ, SBSspinH . (7.126) 

When we have axial symmetry, this simplifies to 

 2
zspin DS−=H . 

For cubic crystal fields, the quadratic (in S) terms go to a constant and can be ne-
glected. In that case, we have to go to a higher order. Things are also more com-
plicated if the ground state has orbital degeneracy. Finally, it is also possible to 
have anisotropic exchange. Also, as we show below, the shape of the sample can 
generate anisotropy. 

Magnetostatics (B) 

The magnetostatic energy can be regarded as the quantity whose reduction causes 
domains to form. The other interactions then, in a sense, control the details of how 
the domains form. Domain formation will be considered in Sect. 7.3. Here we will 
show how the domain magnetostatic interaction can cause shape anisotropy. 
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Consider a magnetized material in which there is no real or displacement cur-
rent. The two relevant Maxwell equations can be written in the absence of external 
currents and in the static situation 

 0=H×∇ , (7.127) 

 0=B⋅∇ . (7.128) 

Equation (7.127) implies there is a potential Φ from which the magnetic field H 
can be derived: 

 Φ∇−=H . (7.129) 

We assume a constitutive equation linking the magnetic induction B, the magneti-
zation M and H; 

 )(0 MHB += μ , (7.130) 

where μ0 is called the permeability of free space. Equations (7.128) and (7.130) 
become 

 MH ⋅∇⋅∇ −= . (7.131) 

In terms of the magnetic potential Φ, 

 M⋅∇=∇ Φ2 . (7.132) 

This is analogous to Poisson’s equation of electrostatics with ρM = −∇·M playing 
the role of a magnetic source density. 

By analogy to electrostatics, and in terms of equivalent surface and volume 
pole densities, we have 

 ⎥⎦
⎤

⎢⎣
⎡ −= ∫∫ VS V

rr
dd

4
1 MSM ⋅∇⋅
π

Φ , (7.133) 

where S and V refer to the surface and volume of the magnetized body. By anal-
ogy to electrostatics the magnetostatic self-energy is 
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d
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−=−==

∫
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VVVU MM

Φ

μΦμΦρμ

∇

⋅⋅∇ ΗMM
 (7.134) 

which also would follow directly from the energy of a dipole μ in a magnetic field 
(−μ·B), with a 1/2 inserted to eliminate double counting. Using ∇·M = −∇·H and 
∫all space ∇·(HΦ)dV = 0, we get 

 ∫= VHUM d
2

20μ . (7.135) 
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For ellipsoidal specimens the magnetization is uniform and 

 MH DD −= , (7.136) 

where HD is the demagnetization field, D is the demagnetization factor that de-
pends on the shape of the sample and the direction of magnetization and hence 
one has shape isotropy, since (7.135) would have different values for M in differ-
ent directions. For ellipsoidal magnets, the demagnetization energy per unit vol-
ume is then 

 220
2

MDuM
μ= . (7.137) 

7.2.3  Spin Waves and Magnons (B) 

If there is an external magnetic field B = μ0Hẑ , and if the magnetic moment of 
each atom is m = 2μS (2μ= ≡ −gμB 14 in previous notation), then the above consid-
erations tell us that the Hamiltonian describing an (nn) exchange coupled spin sys-
tem is 

 ∑∑ −−= + j jzjΔ Δjj SHJ μμ02SS ⋅H . (7.138) 

j runs over all atoms, and δ runs over the nearest neighbors of j, and also we may 
redefine J so as to write (7.138) as H = (J/2)∑…. (We do this sometimes to em-
phasize that (7.138) double counts each interaction.) From now on it will be as-
sumed that there exist real solids for which (7.138) is applicable. The first term in 
this equation is the Heisenberg Hamiltonian and the second term is the Zeeman 
energy. 

Let 

 22 )(∑= j jSS , (7.139) 

and 

 ∑= j jzz SS . (7.140) 

Then it is possible to show that the total spin and the total z component of spin are 
constants of the motion. In other words, 

 0],[ 2 =SH , (7.141) 

and 

 0],[ =zSH . (7.142) 

                                                           
14 The minus sign comes from the negative charge on the electron. 



7.2 Origin and Consequences of Magnetic Order      389 

 

Spin Waves in a Classical Heisenberg Ferromagnet (B) 

We want to calculate the internal energy u (per spin) and the magnetization M. 
Assuming the magnetization is in the z direction and letting 〈A〉 stand for the quan-
tum-statistical average of A, we have (if H = 0) 

 ∑−== ji jiijJ
NN

u ,2
11 SS ⋅H , (7.143) 

and 

 ∑−= iz iz
B

V
gM Sμ , (7.144) 

(with the S written in units of = and V is the volume of the crystal and Jij absorbs 
an =2) where the Heisenberg Hamiltonian is written in the form 

 ∑−= ji jiijJ,2
1 SS ⋅H . 

Using the fact that 

 2222
zyx SSSS ++= , 

assuming a ferromagnetic ground state, and very low temperatures (where spin 
wave theory is valid) so that Sx and Sy are very small, 

 222
yxz SSSS −−−= , 

(negative so M > 0) and thus 
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which can be substituted in (7.144). Then by (7.143) 
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We obtain 
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2

22∑ +−= i iyix
B

B SS
SV

gSg
V
NM μμ  (7.146) 

 ∑ −−++−= ji jyiyjxixiyixij SSSSSSJ
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JzSu ,
22
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, (7.147) 
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where z is the number of nearest neighbors. It is now convenient to Fourier trans-
form the spins and the exchange integral 

 ∑= ki S Rk
kS ⋅ie  (7.148) 

 ∑= R
RqRk ⋅ie)()( JJ . (7.149) 

Using the standard crystal lattice mathematics and S−kx = S*
k  x, we find: 
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⎩
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k kykykxkxB SSSS
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Sg
V
NM

2
11μ  (7.150) 

 ( )∑ ∗∗ +−+−= k kykykxkx SSSSkJJJzSu )()0(
2
1

2

2
. (7.151) 

We still have to evaluate the thermal averages. To do this, it is convenient to 
exploit the analogy of the spin waves to a set of uncoupled harmonic oscillators 
whose energy is proportional to the amplitude squared. We do this by deriving the 
equations of motion and showing in our low-temperature “spin-wave” approxima-
tion that they are harmonic oscillators. We can write the Heisenberg Hamiltonian 
equation as 

 ∑ ∑ −
⎭
⎬
⎫

⎩
⎨
⎧

−
−= j jBi

B

i
ij g

g
J )(

2
1 SS μ

μ
H , (7.152) 

where −gμBSj is the magnetic moment. The 1/2 takes into account the double 
counting and we therefore identify the effective field acting on Sj as 

 ∑−= i iij
BjM J

g
SB

μ
1 . (7.153) 

Treating the Si as dimensionless so =Si is the angular momentum, and using the 
fact that torque is the rate of change of angular momentum and is the moment 
crossed into field, we have for the equations of motion 

 ∑= i ijij
j J

t
SS

S
×

d
d
= . (7.154) 

We leave as a problem to show that after Fourier transformation the equations of 
motion can be written: 

 ∑ ′′ ′′′′−′′= k kkk SSkS ×)(
d

d J
t
k= . (7.155) 

For the ferromagnetic ground state at low temperature, we assume that 

 00 ≠= >> kk SS , 
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since 

 ∑== Rk S
N RS 1

0 , 

and at absolute zero, 

 0  ,  ˆ
00 == ≠= kk SSkS . 

Even with small excitations, we assume S0z = S, S0x = S0y = 0 and Skx, Sky are of 
first order. Retaining only quantities of first order, we have 

 ky
kx SkJJS
t

S  )]()0([
d

d −==  (7.156a) 

 kx
ky SkJJS
t

S
 )]()0([

d
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−−==  (7.156b) 

 0
d

d =
t

Skz= . (7.156c) 

Combining (7.156a) and (7.156b), we obtain harmonic-oscillator-type equations 
with frequencies ω(k) and energies ε(k) given by 

 )]()0([)()( kJJSkk −== ωε = . (7.157) 

Combining this result with (7.151), we have for the average energy per oscillator, 

 ∑ ++−= k kykx SS
S
kJzSu 22

2
||||)(

2
1

2
ε  

for z nearest neighbors. For quantized harmonic oscillators, up to an additive term, 
the average energy per oscillator would be 

 ∑k knk
N

)(1 ε . 

Thus, we identify 〈nk〉 as 

 N
S

SS kykx

2
|||| 22 +

, 

and we write (7.150) and (7.151) as 
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Now 〈nk〉 is the average number of excitations in mode k (magnons) at temperature 
T. 

By analogy with phonons (which represent quanta of harmonic oscillators) we 
say 

 
1e

1
/)( −

= kTkkn ε . (7.160) 

As an example, we work out the consequences of this for simple cubic lattices 
with Z = 6 and nearest-neighbor coupling. 

 ).coscos(cos2e)()( i akakakJRJkJ zyx ++== ∑ Rk ⋅  

At low temperatures where only small k are important, we find 

 22)]()0([ )( aSJkkJJSk ≅−=ε . (7.161) 

We will evaluate (7.158) and (7.159) using (7.160) and (7.161) later after treating 
spin waves quantum mechanically from the beginning. 

The name “spin-waves” comes from the following picture. In Fig. 7.10, sup-
pose 

 ])(iexp[)sin( tkSSkx ωθ= , 

then 

 kykxkx SkSqS ==�= )()(i ωω ==  

by the equation of motion. So, 

 kykx SS =i . 

Therefore, if we had one spin-wave mode q in the x direction, e.g., then 
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(a) 

(b) 

a 

 
Fig. 7.10. Classical representation of a spin wave in one dimension (a) viewed from side 
and (b) viewed from top (along –z). The phase angle from spin to spin changes by ka. 
Adapted from Kittel C, Introduction to Solid State Physics, 7th edn, Copyright © 1996 John 
Wiley and Sons, Inc. This material is used by permission of John Wiley and Sons, Inc 
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Thus, if we take the real part, we find 

 ),sin()sin(
),cos()sin(

tkRSS
tkRSS

xRy
xRx

ωθ
ωθ

+=
+=

 

and the spins all spin with the same frequency but with the phase changing by ka, 
which is the change in kRx, as we move from spin to spin along the x-axis. 

As we have seen, spin waves are collective excitations in ordered spin systems. 
The collective excitations consist in the propagation of a spin deviation, θ. A lo-
calized spin at a site is said to undergo a deviation when its direction deviates 
from the direction of magnetization of the solid below the critical temperature. 
Classically, we can think of spin waves as vibrations in the magnetic moment den-
sity. As mentioned, quanta of the spin waves are called magnons. The concept of 
spin waves was originally introduced by F. Bloch, who used it to explain the tem-
perature dependence of the magnetization of a ferromagnet at low temperatures. 
The existence of spin waves has now been definitely proved by experiment. Thus 
the concept has more validity than its derivation from the Heisenberg Hamiltonian 
might suggest. We will only discuss spin waves in ferromagnets but it is possible 
to make similar comments about them in any ordered magnetic structure. The dif-
ferences between the ferromagnetic case and the antiferromagnetic case, for ex-
ample, are not entirely trivial [60, p 61]. 

Spin Waves in a Quantum Heisenberg Ferromagnet (A) 

The aim of this section is rather simple. We want to show that the quantum 
Heisenberg Hamiltonian can be recast, in a suitable approximation, so that its en-
ergy excitations are harmonic-oscillator-like, just as we found classically (7.161). 

Here we make two transformations and a long-wavelength, low-temperature 
approximation. One transformation takes the Hamiltonian to a localized excitation 
description and the other to an unlocalized (magnon) description. However, the 
algebra can get a little complex. 

Equation (7.138) (with = = 1 or 2μ = −gμB) is our starting point for the three-
dimensional case, but it is convenient to transform this equation to another form 
for calculation. From our previous discussion, we believe that magnons are similar 
to phonons (insofar as their mathematical description goes), and so we might 
guess that some sort of second quantization notation would be appropriate. We 
have already indicated that the squared total spin and the z component of total spin 
give good quantum numbers. We can also show that Sj

2 commutes with the 
Heisenberg Hamiltonian so that its eigenvalues S(S + 1) are good quantum num-
bers. This makes sense because it just says that the total spin of each atom remains 
constant. We assume that the spin S of every ion is the same. Although each atom 
has three components of each spin vector, only two of the components are inde-
pendent. 
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The Holstein and Primakoff Transformation (A) Holstein and Primakoff15 
have developed a transformation that not only has two independent variables, but 
also utilizes the very convenient second quantization notation. The Holstein–
Primakoff transformation is also very useful for obtaining terms that describe 
magnon–magnon interactions.16 This transformation is (with = = 1 or S represent-
ing S/=): 
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2/1†
†

2
1 2i

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−=−≡−

S
aa

aSSSS jj
jjyjxj , (7.163) 

 jjjz aaSS † −≡ . (7.164) 

We could use these transformation equations to attempt to determine what 
properties aj and aj

† must have. However, it is much simpler to define the proper-
ties of the aj and aj

† and show that with these definitions the known properties of 
the Sj operators are obtained. We will assume that the a† and a are boson creation 
and annihilation operators (see Appendix G) and hence they satisfy the commuta-
tion relations 

 l
jlj aa δ=] ,[ † . (7.165) 

We first show that (7.164) is consistent with (7.162) and (7.163). This amounts 
to showing that the Holstein–Primakoff transformation automatically puts in the 
constraint that there are only two independent components of spin for each atom. 
We start by dropping the subscript j for a particular atom and by using the fact that 
Sj

2 has a good quantum number so we can substitute S(S + 1) for Sj
2 (with = = 1). 

We can then write 

 )()1( 2
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By use of (7.162) and (7.163) we can use (7.166) to calculate Sz
2. That is, 
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 (7.167) 

                                                           
15 See, for example, [7.38]. 
16 At least for high magnetic fields; see Dyson [7.18]. 
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Remember that we define a function of operators in terms of a power series for the 
function, and therefore it is clear that a†a will commute with any function of a†a. 
Also note that [a†a, a] = a†aa − aa†a = a†aa − (1 + a†a)a = −a, and so we can 
transform (7.167) to give after several algebraic steps: 

 2†2 )( aaSSz −= . (7.168) 

Equation (7.168) is consistent with (7.164), which was to be shown. 
We still need to show that Sj

+ and Sj
− defined in terms of the annihilation and 

creation operators act as ladder operators should act. Let us define an eigenket of 
Sj

2 and Sjz, by (still with = = 1) 

 ssj mSSSmSS ,)1(,2 += , (7.169) 

and 

 sssjz mSmmSS ,, = . (7.170) 

Let us further define a spin-deviation eigenvalue by 

 smSn −= , (7.171) 

and for convenience let us shorten our notation by defining 

 smSn ,= . (7.172) 

By (7.162) we can write 
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where we have used aj|n〉 = n1/2|n − 1〉 and also the fact that 

 nnnSSnaa jzjj =−= )(† . (7.174) 

By converting back to the |S, ms〉 notation, we see that (7.173) can be written 

 . 1, )1)(( , +++−=+
ssssj mSmSmSmSS  (7.175) 

Therefore Sj
+ does have the characteristic property of a ladder operator, which is 

what we wanted to show. We can similarly show that the Sj
− has the step-down 

ladder properties. 
Note that since (7.175) is true, we must have that 

 0, ==+ SmSS s . (7.176) 
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A similar calculation shows that 

 0, ==−− SmSS s . (7.177) 

We needed to assure ourselves that this property still held even though we defined 
the S+ and S− in terms of the aj

† and aj. This is because we normally think of the a 
as operating on |n〉, where 0 ≤ n ≤ ∞. In our situation we see that 0 ≤ n < 2S + 1. 
We have now completed the verification of the consistency of the Holstein–
Primakoff transformation. It is time to recast the Heisenberg Hamiltonian in this 
new notation. 

Combining the results of Problem 7.10 and the Holstein–Primakoff transforma-
tion, we can write 
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  (7.178) 
Equation (7.178) is the Heisenberg Hamiltonian (plus a term for an external mag-
netic field) expressed in second quantization notation. It seems as if the problem 
has been complicated rather than simplified by the Holstein–Primakoff transfor-
mation. Actually both (7.138) and (7.178) are equally impossible to solve exactly. 
Both are many-body problems. The point is that (7.178) is in a form that can be 
approximated fairly easily. The approximation that will be made is to expand the 
square roots and concentrate on low-order terms. Before this is done, it is conven-
ient to take full advantage of translational symmetry. This will be done in the next 
section. 

Magnons (A) The aj
† create localized spin deviations at a single site (one atom 

per unit cell is assumed). What we need (in order to take translational symmetry 
into account) is creation operators that create Bloch-like nonlocalized excitations. 
A transformation that will do this is 

 ∑= j jj a
N

B )iexp(1 Rkk ⋅ , (7.179a) 

and 

 ∑ −= j jj a
N

B †† )iexp(1 Rkk ⋅ , (7.179b) 
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where Rj is defined by (2.171) and cyclic boundary conditions are used so that the 
k are defined by (2.175). N = N1N2N3 and so the delta function relations (2.178) to 
(2.184) are valid. k will be assumed to be restricted to the first Brillouin zone. Us-
ing all these results, we can derive the inverse transformation 

 ∑ −= k kRk B
N

a jj )iexp(1 ⋅ , (7.180a) 

and 

 ∑= k kRk †† )iexp(1 B
N

a jj ⋅ . (7.180b) 

So far we have not shown that the B are boson creation and annihilation opera-
tors. To show this, we merely need to show that the B satisfy the appropriate 
commutation relations. The calculation is straightforward, and is left as a problem 
to show that the Bk obey the same commutation relations as the aj. 

We can give a very precise definition to the word magnon. First let us review 
some physical principles. Exchange coupled spin systems (e.g. ferromagnets and 
antiferromagnets) have low-energy states that are wave-like. These wave-like en-
ergy states are called spin waves. A spin wave is quantized into units called 
magnons. We may have spin waves in any structure that is magnetically ordered. 
Since in the low-temperature region there are only a few spin waves that are ex-
cited and thus their complicated interactions are not so important, this is the best 
temperature region to examine spin waves. Mathematically, precisely whatever is 
created by Bk

† and annihilated by Bk is called a magnon. 
There is a nice theorem about the number of magnons. The total number of 

magnons equals the total spin deviation quantum number. This theorem is easily 
proved as shown below: 
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This proves the theorem, since Bk
†Bk is the occupation number operator for the 

number of magnons in mode k. 
The Hamiltonian defined by (7.178) will now be approximated. The spin-wave 

variables Bk will also be substituted. 
At low temperatures we may expect the spin-deviation quantum number to be 

rather small. Thus we have approximately 

 Saa jj <<† . (7.181) 
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This implies that the relation between the S and a can be approximated by 
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and 

 jjjz aaSS †−= . (7.182c) 

Expressing these results in terms of the B, we find 
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and 

 kkkk Rkk ′′∑ ′−−= BB
N

SS jjz
†

, ])(iexp[1 ⋅ . (7.183c) 

The details of the calculation begin to get rather long at about this stage. The 
approximate Hamiltonian in terms of spin-wave variables is obtained by substitut-
ing (7.183) into (7.178). Considerable simplification results from the delta func-
tion relations. Terms of order (〈ai

†ai〉/S)2 are to be neglected for consistency. The 
final result is 

 ex0 HHH += , (7.184) 

neglecting a constant term, where Z is the number of nearest neighbors, H0 is the 
term that is bilinear in the spin wave variables and is given by 
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 ∑= ΔZ
)iexp(1 Δkk ⋅α , (7.186) 
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and Hex is called the exchange interaction Hamiltonian and is biquadratic in the 
spin-wave variables. It is given by 

      ∑ −
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4321 21143
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kkkk kkkkk
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kk ααδδ BBBB
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JZexH . (7.187) 

Note that H0 describes magnons without interactions and Hex includes terms 
that describe the effect of interactions. Mathematically, we do not want to con-
sider interactions. Physically, it makes sense to believe that interactions should not 
be important at low temperatures. We can show that Hex can be neglected for long-
wavelength magnons, which should be the only important magnons at low tem-
perature. We will therefore neglect Hex in all discussions below. 

H0 can be somewhat simplified. Incidentally, the formalism that is being used 
assumes only one atom per unit cell and that all atoms are equally spaced and 
identical. Among other things, this precludes the possibility of having “optical 
magnons.” This is analogous to the lattice vibration problem where we do not 
have optical phonons in lattices with one atom per unit cell. 

H0 can be simplified by noting that if the crystal has a center of symmetry, then 
αk = α−k, and also 

 0)iexp(1 0 === ∑∑ ∑∑ Δ ΔΔ kk k Δk δα
Z
N

Z
⋅ , 

where the last term is zero because Δ, being the vector to nearest-neighbor atoms, 
can never be zero. Also note that BB† − 1 = B†B. Using these results and defining 
(with H = 0) 

 )1(2 kk αω −= JSZ= , (7.188) 

we find 

 ∑= k kk nH ω=0 , (7.189) 

where nk is the occupation number operator for the magnons in mode k. 
If the wavelength of the spin waves is much greater than the lattice spacing, so 

that atomic details are not of much interest, then we are in a classical region. In 
this region, it makes sense to assume that k ⋅ Δ << 1, which is also the long-
wavelength approximation made in neglecting Hex. Thus we find 

 ∑≅ Δk Δk 2)( ⋅JSω= . (7.190) 

If further we have a simple cubic, bcc, or fcc lattice, then 

 ∗=
m2

22k
k

==ω , (7.191) 
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where 

 12)2( −∗ ∝ ZJSam , (7.192) 

and a is the lattice spacing. The reality of spin-wave dispersion has been shown by 
inelastic neutron scattering. See Fig. 7.11. 

Specific Heat of Spin Waves (A) With 

 ,0,1,1
†

=<<<< Hka
S

aa ii
 

and assuming we have a monatomic lattice, the magnons were found to have the 
energies 

 2Ck=kω= , (7.193) 

 
Fig. 7.11. Fe (12 at. % Si) room-temperature spin-wave dispersion relations at low energy. 
Reprinted with permission from Lynn JW, Phys Rev B 11(7), 2624 (1975). Copyright 1975 
by the American Physical Society 
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where C is a constant. Thus apart from notation (7.161) and (7.193) are identical. 
We also know that the magnons behave as bosons. We can return to (7.158), 
(7.159), (7.160), and (7.161) to evaluate the magnetization as well as the internal 
energy due to spin waves. 

Now in (7.158) we can replace a sum with an integral because for large N the 
number of states is fairly dense and in dk per unit volume is dk/(2π)3. So 
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Also we have used that at low T the upper limit can be set to infinity without ap-
preciable error. Changing the integration variable to x = (JS/kBT)1/2ka, we find at 
low temperature 
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N1 and N2 are numbers that can be evaluated in terms of gamma functions and 
Riemann zeta functions. We thus find 
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Thus, from (7.195) by taking the temperature derivative we find the low-
temperature magnon specific heat, as first shown by Bloch, is 

 2/3TCV ∝ . (7.196) 

Similarly, by (7.194) the low-temperature deviation from saturation goes as T3/2. 
these results only depend on low-energy excitations going as k2. 

Also at low T, we have a lattice specific heat that goes as T3. So at low T we 
have 

 32/3 bTaTCV += , 

where a and b are constants. Thus 

 2/32/3 bTaTCV +=− , 

so theoretically, plotting CT–3/2 vs T3/2 will yield a straight line at low T. Experi-
mental verification is shown in Fig. 7.12 (note this is for a ferrimagnet for which 
the low-energy =ωk is also proportional to k2). 

At higher temperatures there are deviations from the 3/2 power law and it is 
necessary to make refinements in the above theory. One source of deviations is 
spin-wave interactions. We also have to be careful that we do not approximate 
away the kinematical part, i.e. the part that requires the spin-deviation quantum 
number on a given site not to exceed (2Sj + 1). Then, of course, in a more careful 
analysis we would have to pay more attention to the geometrical shape of the Bril-
louin zone. Perhaps our worst error involves (7.191), which leads to an approxi-
mate density of states and hence to an approximate form for the integral in the 
calculation of CV and ΔM. 
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Fig. 7.12. CV at low T for ferrimagnet YIG. After Elliott RJ and Gibson AF, An Introduc-
tion to Solid State Physics and Applications, Macmillan, 1974, p 461. Original data from 
Shinozaki SS, Phys Rev 122, 388 (1961)) 
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Table 7.1. Summary of spin-wave properties (low energy and low temperature) 

 Dispersion 
relation 

ΔM = Ms – M 
magnetization 

C 
magnetic Sp. Ht. 

Ferromagnet ω = A1k2 B1T 3/2 B2T 3/2 

Antiferromagnet ω = A2k B2T 2 (sublattice) C2T 3 

Ai and Bi are constants. For discussion of spin waves in more complicated struc-
tures see, e.g., Cooper [7.13]. 

Equation (7.193) predicts that the density of states (up to cutoff) is proportional 
to the magnon energy to the 1/2 power. A similar simple development for antiferro-
magnets [it turns out that the analog of (7.193) only involves the first power of |k| 
for antiferromagnets] also leads to a relatively smooth dependence of the density of 
states on energy. In any case, a determination from analyzing the neutron diffrac-
tion of an actual magnetic substance will show a result that is not so smooth (see 
Fig. 7.13). Comparison of spin-wave calculations to experiment for the specific 
heat for EuS is shown in Fig. 7.14.17 EuS is an ideal Heisenberg ferromagnet. 
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Fig. 7.13. Density of states for magnons in Tb at 90 K. The curve is a smoothed computer plot. 
[Reprinted with permission from Moller HB, Houmann JCG, and Mackintosh AR, Journal of 
Applied Physics, 39(2), 807 (1968). Copyright 1968, American Institute of Physics.] 

                                                           
17 A good reference for the material in this chapter on spin waves is an article by Kittel 

[7.38] 
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Fig. 7.14. Spin wave specific heat of EuS. An equation of the form C/R = aT3/2 + bT5/2 is 
needed to fit this curve. For an evaluation of b, see Dyson FJ, Physical Review, 102, 1230 
(1956). [Reprinted with permission from McCollum, Jr. DC, and Callaway J, Physical Re-
view Letters, 9 (9), 376 (1962). Copyright 1962 by the American Physical Society.] 

Magnetostatic Spin Waves (MSW) (A) 

For very large wavelengths, the exchange interaction between spins no longer can 
be assumed to be dominant. In this limit, we need to look instead at the effect of 
dipole–dipole interactions (which dominate the exchange interactions) as well as 
external magnetic fields. In this case spin-wave excitations are still possible but 
they are called magnetostatic waves. Magnetostatic waves can be excited by in-
homogeneous magnetic fields. MSW look like spin waves of very long wave-
length, but the spin coupling is due to the dipole–dipole interaction. There are 
many device applications of MSW (e.g. delay lines) but a discussion of them 
would take us too far afield. See, e.g., Auld [7.3], and Ibach and Luth [7.33]. Also 
see Kittel [7.38 p471ff], and Walker [7.65]. There are also surface or Damon–
Eshbach wave solutions.18 

                                                           
18 Damon and Eshbach [7.17]. 
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7.2.4  Band Ferromagnetism (B) 

Despite the obvious lack of rigor, we have justified qualitatively a Heisenberg 
Hamiltonian for insulators and rare earths. But what can we do when we have 
ferromagnetism in metals? It seems to be necessary to take into account the band 
structure. This topic is very complicated, and only limited comments will be made 
here. See Mattis [7.48], Morrish [68] and Yosida [7.72] for more discussion. 

In a metal, one might hope that the electrons in unfilled core levels would inter-
act by the Heisenberg mechanism and thus produce ferromagnetism. We might ex-
pect that the conduction process would be due to electrons in a much higher band 
and that there would be little interaction between the ferromagnetic electrons and 
conduction electrons. This is not always the case. The core levels may give rise to a 
band that is so wide that the associated electrons must participate in the conduction 
process. Alternatively, the core levels may be very tightly bound and have very nar-
row bands. The core wave functions may interact so little that they could not di-
rectly have the Heisenberg exchange between them. That such materials may still 
be ferromagnetic indicates that other electrons such as the conduction electrons 
must play some role (we have discussed an example in Sect. 7.2.1 under RKKY In-
teraction). Obviously, a localized spin model cannot be good for all types of ferro-
magnetism. If it were, the saturation magnetization per atom would be an integral 
number of Bohr magnetons. This does not happen in Ni, Fe, and Co, where the 
number of electrons per atom contributing to magnetic effects is not an integer. 

Despite the fact that one must use a band picture in describing the magnetic 
properties of metals, it still appears that a Heisenberg Hamiltonian often leads to 
predictions that are approximately experimentally verified. It is for this reason that 
many believe the Heisenberg Hamiltonian description of magnetic materials is 
much more general than the original derivation would suggest. 

As an approach to a theory of ferromagnetism in metals it is worthwhile to pre-
sent one very simple band theory of ferromagnetism. We will discuss Stoner’s 
theory, which is also known as the theory of collective electron ferromagnetism. 
See Mattis [7.48 Vol. I p250ff] and Herring [7.56 p256ff]. The two basic assump-
tions of Stoner’s theory are: 

1. The ferromagnetic electrons or holes are free-electron-like (at least near the 
Fermi energy); hence their density of states has the form of a constant times 
E1/2, and the energy is 

 
∗=

m
kE

2

22= . (7.197a) 

2. There is still assumed to be some sort of exchange interaction between the 
(free) electrons. This interaction is assumed to be representable by a molecular 
field M. If γ is the molecular field constant, then the exchange interaction en-
ergy of the electrons is (SI) 

 μγμ ME 0±= , (7.197b) 

 where μ represents the magnetic moment of the electrons, + indicates electrons 
with spin parallel, and − indicates electrons with spin antiparallel to M. 
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The magnetization equals μ (here the magnitude of the magnetic moment of the 
electron = μB) times the magnitude of the number of parallel spin electrons per 
unit volume minus the number of antiparallel spin electrons per unit volume. Us-
ing the ideas of Sect. 3.2.2, we can write 

 ∫ +−−= E
V

EKMEfMEfM d
2

)]()([ 00 μγμμγμμ , (7.198) 

where f is the Fermi function. The above is the basic equation of Stoner’s theory, 
with the sum of the parallel and antiparallel electrons being constant. For T = 0 
and sufficiently strong exchange coupling the magnetization has as its saturation 
value M = Nμ. For sufficiently weak exchange coupling the magnetization van-
ishes. For intermediate values of the exchange coupling the magnetization has in-
termediate values. Deriving M as a function of temperature from the above equa-
tion is a little tedious. The essential result is that the Stoner theory also allows the 
possibility of a phase transition. The qualitative details of the M versus T curves 
do not differ enormously from the Stoner theory to the Weiss theory. We develop 
one version of the Stoner theory below. 

The Hubbard Model and the Mean-Field Approximation (A) 

So far, except for Pauli paramagnetism, we have not considered the possibility of 
nonlocalized electrons carrying a moment, which may contribute to the magneti-
zation. Consistent with the above, starting with the ideas of Pauli paramagnetism 
and adding an exchange interaction leads us to the type of band ferromagnetism 
called the Stoner model. Stoner’s model for band ferromagnetism is the nonlocal-
ized mean field counterpart of Weiss’ model for localized ferromagnetism. How-
ever, Stoner’s model has neither the simplicity, nor the wide applicability of the 
Weiss approach. 

Just as a mean-field approximation to the Heisenberg Hamiltonian gives us the 
Weiss model, there exists another Hamiltonian called the Hubbard Hamiltonian, 
whose mean-field approximation gives rise to a Stoner model. Also, just as the 
Heisenberg Hamiltonian gives good insight to the origin of the Weiss molecular 
field. So, the Hubbard model gives some physical insight concerning the exchange 
field for the Stoner model. 

The Hubbard Hamiltonian as originally introduced was intended to bridge the 
gap between a localized and a mobile electron point of view. In general, in a suit-
able limit, it can describe either case. If one does not go to the limit, it can (in a 
sense) describe all cases in between. However, we will make a mean-field ap-
proximation and this displays the band properties most effectively. 

One can give a derivation, of sorts, of the Hubbard Hamiltonian. However, so 
many assumptions are involved that it is often clearer just to write the Hamilto-
nian down as an assumption. This is what we will do, but even so, one cannot 
solve it exactly for cases that approach realism. Here we will solve it within the 
mean-field approximation, and get, as we have mentioned, the Stoner model of 
itinerant ferromagnetism. 
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In a common representation, the Hubbard Hamiltonian is 

 ∑∑ −+= σα σαασσ σσε , ,,
†

2
nnIaak kkkH , (7.199) 

where σ labels the spin (up or down), k labels the band energies, and α labels the 
lattice sites (we have assumed only one band—say an s-band—with εk being the 
band energy for wave vector k). The a†

kσ and akσ are creation and annihilation op-
erators and I defines the interaction between electrons on the same site. 

It is important to notice that the Hubbard Hamiltonian (as written above) as-
sumes the electron–electron interactions are only large when the electrons are on 
the same site. A narrow band corresponds to localization of electrons. Thus, the 
Hubbard Hamiltonian is often said to be a narrow s-band model. The nασ are Wan-
nier site-occupation numbers. The relation between band and Wannier (site local-
ized) wave functions is given by the use of Fourier relations: 

 ∑ −−=
α ααψ Rk RrRk )()iexp(1 W

N
⋅ , (7.200a) 

 ∑=− k k rRkRr )()iexp(1)( ψαα ⋅
N

W . (7.200b) 

Since the Bloch (or band) wave functions ψk are orthogonal, it is straightforward 
to show that the Wannier functions W(r − Rα) are also orthogonal. The Wannier 
functions W(r − Rα) are localized about site α and, at least for narrow bands, are 
well approximated by atomic wave functions. 

Just as a†
kσ creates an electron in the state ψk [with spin σ either + or ↑ (up) or 

− ↓ (down)], so c†
ασ (the site creation operator) creates an electron in the state 

W(r − Rα), again with  the spin either up or down. Thus, occupation number op-
erators for the localized Wannier states are n†

ασ = c†
ασcασ and consistent with 

(7.200a) the two sets of annihilation operators are related by the Fourier transform 

 ∑=
α ασασ Rk Rk c

N
a )iexp(1 ⋅ . (7.201) 

Substituting this into the Hubbard Hamiltonian and defining 

 ∑ −⋅= k k RRk )](iexp[1
βααβ ε

N
T , (7.202) 

we find 

 ∑∑ −
++ += σα σαασσβα ασβσαβ ,,, 2

nnIccTH . (7.203) 

This is the most common form for the Hubbard Hamiltonian. It is often further as-
sumed that Tαβ is only nonzero when α and β are nearest neighbors. The first term 
then represents nearest-neighbor hopping. 
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Since the Hamiltonian is a many-electron Hamiltonian, it is not exactly solv-
able for a general lattice. We solve it in the mean-field approximation and thus re-
place 

 ∑ −σα σαασ, ,2
nnI , 

with 

 ∑ −σα σαασ, ,nnI , 

where 〈nα,−σ〉 is the thermal average of nα,−σ. We also assume 〈nα,−σ〉 is inde-
pendent of site and so write it down as n−σ in (7.204). 

Itinerant Ferromagnetism and the Stoner Model (B) 

The mean-field approximation has been criticized on the basis that it builds in the 
possibility of an ordered ferromagnetic ground state regardless of whether the 
Hubbard Hamiltonian exact solution for a given lattice would predict this. Never-
theless, we continue, as we are more interested in the model we will eventually 
reach (the Stoner model) than in whether the theoretical underpinnings from the 
Hubbard model are physical. The mean-field approximation to the Hubbard model 
gives 

 ∑∑ −+= σα ασσσβα ασβσαβ ,,,
† nnIccTH . (7.204) 

Actually, in the mean-field approximation, the band picture is more convenient to 
use. Since we can show 

 ∑ ∑=α σασ k knn , 

the Hubbard model in the mean field can then be written as 

 ∑ −+= σ σσε, )(k kk nInH . (7.205) 

The single-particle energies are given by  

 σσ ε −+= InE kk , . (7.206) 

The average number of electrons per site n is less than or equal to 2 and n = 
n+ + n−, while the magnetization per site n is M = (n+ − n−)μB, where μB is the Bohr 
magneton. 

Note: In order not to introduce another “−” sign, we will say “spin up” for now. 
This really means “moment up” or spin down, since the electron has a negative 
charge. 
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Note n + (M/μB) = 2n+ and n − (M/μB) = 2n−. Thus, up to an additive constant 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=±

B

MIE
μ

ε
2

∓kk . (7.207) 

Note (7.207) is consistent with (7.197b). If we then define Heff = IM/2μB
2, we 

write the following basic equations for the Stoner model: 

 )( ↓↑ −= nnM Bμ , (7.208) 

 eff, HE Bμεσ ∓kk = , (7.209) 

 2eff
2 B

IMH
μ

= , (7.210) 

 ∑ +−
= k

k 1]/)exp[(
11

kTMEN
n

μσ
σ , (7.211) 

 nnn =+ ↓↑ . (7.212) 

Although these equations are easy to write down, it is not easy to obtain simple 
convenient solutions from them. As already noted, the Stoner model contains two 
basic assumptions: (1) The electronic energy band in the metal is described by a 
known εk. By standard means, one can then derive a density of states. For free 
electrons, N(E) ∝ (E)1/2. (2) A molecular field approximately describes the effects 
of the interactions and we assume Fermi–Dirac statistics can be used for the spin-
up and spin-down states. Much of the detail and even standard notation has been 
presented by Wohlfarth [7.69]. See also references to Stoner’s work in the works 
by Wohlfarth. 

The only consistent way to determine εk and, hence, N(E) is to derive it from 
the Hubbard Hamiltonian. However, following the usual Stoner model we will 
just use an N(E) for free electrons. 

The maximum saturation magnetization (moment per site) is M0 = μBn and the 
actual magnetization is M = μB(n↑ − n↓). For the Stoner model, a relative magneti-
zation is defined below: 

 
n

nn
M
M ↓↑ −

==
0

ξ . (7.213) 

Using (7.212) and (7.213), we have 

 
2

)1( nnn ξ+== ↑+ ,  (7.214a) 

 
2

)1( nnn ξ−== ↓− .  (7.214b) 
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It is also convenient to define a temperature θ′, which measures the strength of the 
exchange interaction 

 effHk Bμξθ =′ . (7.215) 

We now suppose that the exchange energy is strong enough to cause an imbal-
ance in the number of spin-up and spin-down electrons. We can picture the situa-
tion with constant Fermi energy μ = EF (at T = 0) and a rigid shifting of the up N+ 
and the down N− density states as shown in Fig. 7.15. 

The ↑ represents the “spin-up” (moment up actually) band and the ↓ the “spin-
down” band. The shading represents states filled with electrons. The exchange en-
ergy causes the splitting of the two bands. We have pictured the density of states 
by a curve that goes to zero at the top and bottom of the band unlike a free-
electron density of states that goes to zero only at the bottom. 

 

2Δ

EF

N– N+

E 

 
Fig. 7.15. Density states imbalanced by exchange energy 

At T = 0, we have 

 ∫ ++ =+= states occ. d)(
2

)1( EENnn ξ ,  (7.216a) 

 ∫ −− =−= states occ. d)(
2

)1( EENnn ξ .  (7.216b) 

This can be easily worked out for free electrons if E = 0 at the bottom of both 
bands, 

 )(2
4

1)(
2
1)(

2/3

22total ENEmENEN ≡⎟
⎠

⎞
⎜
⎝

⎛==±
=π

. (7.217) 
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We now derive conditions for which the magnetized state is stable at T = 0. If 
we just use a single-electron picture and add up the single-electron energies, we 
find, with the (–) band shifted up by Δ and the (+) band shifted down by Δ, for the 
energy per site 

 ∫∫
+−

+−+= +− FF EE EEENnEEENnE 00 d)(Δd)(Δ . 

The terms involving Δ are the exchange energy. We can rewrite it from (7.208), 
(7.213), and (7.215) as 

 2Δ ξθ
μ

′−=− nkM

B
. 

However, just as in the Hartree–Fock analysis, this exchange term has double 
counted the interaction energies (once as a source of the field and once as interac-
tion with the field). Putting in a factor of 1/2, we finally have for the total energy 

 2
00 2

1d)(d)( ξθ ′−+= ∫∫
−+

nkEEENEEENE FF EE . (7.218) 

Differentiating (d/dξ) (7.216) and (7.218) and combining the results, we can show 

 ξθ
ξ

′−−= −+ kEEE
n FF )(

2
1

d
d1 . (7.219) 

Differentiating (7.219) a second time and again using (7.216), we have 

 θ
ξ

′−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= −+ k

ENEN
nE

n FF )(
1

)(
1

4d
d1

2

2
. (7.220) 

Setting dE/dξ = 0, just gives the result that we already know 

 Δ22)(2 eff ==−=′ −+ HEEk BFF μξθ . 

Note if ξ = 0 (paramagnetism) and dE/dξ = 0, while d2E/dξ2 < 0 the paramagnet-
ism is unstable with respect to ferromagnetism. ξ = 0, dE/dξ = 0 implies EF

+ = EF
- 

and N(EF
-) = N(EF

+) = N(EF). So by (7.220) with d2E/dξ2 ≤ 0 we have 

 
)(2 FEN

nk ≥′θ . (7.221) 

For a parabolic band with N(E) ∝ E1/2, this implies 

 
3
2≥

′

FE
kθ . (7.222) 
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We now calculate the relative magnetization (ξ0) at absolute zero for a parabolic 
band where N(E) = K(E)1/2 where K is a constant. From (7.216) 

 2/3
0 )(

3
2

2
)1( +=+ FEKnξ , 

 2/3
0 )(

3
2

2
)1( −=− FEKnξ . 

Also 

 2/3
3
4

FKEn = . 

Eliminating K and using EF
+ − EF

− = 2kθ′ξ0, we have 

 ])1()1[(
2
1 3/2

0
3/2

0
0

ξξ
ξ

θ −−+=
′

FE
k , (7.223) 

which is valid for 0 ≤ ξ0 ≤ 1. The maximum ξ0 can be is 1 for which kθ′/EF = 2−1/3, 
and at the threshold for ferromagnetism ξ0 is 0. So, kθ′/EF = 2/3 as already pre-
dicted by the Stoner criterion. 

Summary of Results at Absolute Zero 
We have three ranges: 

 0and667.0
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0 ===<
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The middle range, where 0 < ξ0 < 1 is special to Stoner ferromagnetism and not to 
be found in the Weiss theory. This middle range is called “unstructured” or 
“weak” ferromagnetism. It corresponds to having electrons in both ↑ and ↓ bands. 
For very low, but not zero, temperatures, one can show for weak ferromagnetism 
that 

 2
0 CTMM −= , (7.224) 

where C is a constant. This is particularly easy to show for very weak ferromag-
netism, where ξ0 << 1 and is left as an exercise for the reader. 
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We now discuss the case of strong ferromagnetism where kθ′/EF > 2−1/3. For 
this case, ξ0 = 1, and n↑ = n, n↓ = 0. There is now a gap Eg between EF

+ and the 
bottom of the spin-down band. For this case, by considering thermal excitations to 
the n↓ band, one can show at low temperature that 

 )/exp(2/3
0 kTETKMM g−′′−= , (7.225) 

where K″ is a constant. However, spin-wave theory says M = M0 − C′T3/2, where 
C′ is a constant, which agrees with low-temperature experiments. So, at best, 
(7.225) is part of a correction to low-temperature spin-wave theory. 

Within the context of the Stoner model, we also need to talk about exchange 
enhancement of the paramagnetic susceptibility χP (gaussian units with μ0 = 1) 

 Total
effBM Pχ= , (7.226) 

where M is the magnetization and χP the Pauli susceptibility, which for low tem-
peratures, has a very small αT2 term. It can be written 

 )1)((2 22 TEN FBP αμχ += , (7.227) 

where N(E) is the density of states for one subband. Since 

 ,eff
Total
eff BBBHB +=+= γ  

it is easy to show that (gaussian with B = H) 

 
P

P
B
M

γχ
χχ

−
==

1
, (7.228) 

where 1/(1 − γχP) is the exchange enhancement factor. 
We can recover the Stoner criteria from this at T = 0 by noting that paramag-

netism is unstable if 

 10 ≥γχP . (7.229) 

By using γ = kθ′/nμB
2 and χP

0 = 2μB
2N(EF), (7.229) just gives the Stoner criteria. At 

finite, but low temperatures where (α = –|a|) 

 )||1( 20 TaPP −= χχ , 

if we define 

 
||

1
0

0
2

aP

P

γχ
γχθ −= , 

and suppose |a|T2 << 1, it is easy to show 

 22
1

||
1

θγ
χ

−
=

Ta
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Thus, as long as T ≅ θ, we have a Curie–Weiss-like law: 

 
θθγ

χ
−

=
Ta

1
||2

1 . (7.230) 

At very high temperatures, one can also show that an ordinary Curie–Weiss-like 
law is obtained: 

 
θ

μχ
−

=
Tk

n B 12
. (7.231) 

Summary Comments About the Stoner Model 

1. The low-temperature results need to be augmented with spin waves. Although 
in this book we only derive the results of spin waves for the localized model, it 
turns out that spin waves can also be derived within the context of the itinerant 
electron model. 

2. Results near the Curie temperature are never qualitatively good in a mean-field 
approximation because the mean-field approximation does not properly treat 
fluctuations. 

3. The Stoner model gives a simple explanation of why one can have a fractional 
number of electrons contributing to the magnetization (the case of weak ferro-
magnetism where ξ0 = MT=0/nμB is between 0 and 1). 

4. To apply these results to real materials, one usually needs to consider that there 
are overlapping bands (e.g. both s and d bands), and not all bands necessarily 
split into subbands. However, the Stoner model does seem to work for ZrZn2. 

7.2.5  Magnetic Phase Transitions (A) 

Simple ideas about spin waves break down as Tc is approached. We indicate here 
one way of viewing magnetic phenomena near the T = Tc region. In this Section 
we will discuss magnetic phase transitions in which the magnetization (for ferro-
magnets with H = 0) goes continuously to zero as the critical temperature is ap-
proached from below. Thus at the critical temperature (Curie temperature for a 
ferromagnet) the ordered (ferromagnetic) phase goes over to the disordered 
(paramagnetic) phase. This “smooth” transition from one phase (or more than one 
phase in more general cases) to another is characteristic of the behavior of many 
substances near their critical temperature. In such continuous phase transitions 
there is no latent heat and these phase transitions are called second-order phase 
transitions. All second-order phase transitions show many similarities. We shall 
consider only phase transitions in which there is no latent heat. 

No complete explanation of the equilibrium properties of ferromagnets near the 
magnetic critical temperature (Tc) has yet been given, although the renormaliza-
tion technique, referred to later, comes close. At temperatures well below Tc we 
know that the method of spin waves often yields good results for describing the 
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magnetic behavior of the system. We know that high-temperature expansions of 
the partition function yield good results. The Green function method provides re-
sults for interesting physical quantities at all temperatures. However, the Green 
function results (in a usable approximation) are not valid near Tc. Two methods 
(which are not as straightforward as one might like) have been used. These are the 
use of scaling laws19 and the use of the Padé approximant.20 These methods often 
appear to give good quantitative results without offering much in the way of quali-
tative insight. Therefore we will not discuss them here. The renormalization 
group, referenced later, in some ways is a generalization of scaling laws. It seems 
to offer the most in the way of understanding. 

Since the region of lack of knowledge (around the phase transition) is only near 
τ = 1 (τ = T/Tc, where Tc is the critical temperature) we could forget about the re-
gion entirely (perhaps) if it were not for the fact that very unusual and surprising 
results happen here. These results have to do with the behavior of the various 
quantities as a function of temperature. For example, the Weiss theory predicts for 
the (zero field) magnetization that M ∝ (Tc − T)+1/2 as T → Tc

− (the minus sign 
means that we approach Tc from below), but experiment often seems to agree bet-
ter with M ∝ (Tc − T)+1/3. Similarly, the Weiss theory predicts for T > Tc that the 
zero-field susceptibility behaves as χ ∝ (T − Tc)−1, whereas experiment for many 
materials agrees with χ ∝ (T − Tc)−4/3 as T → Tc

+. In fact, the Weiss theory fails 
very seriously above Tc because it leaves out the short-range ordering of the spins. 
Thus it predicts that the (magnetic contribution to the) specific heat should vanish 
above Tc, whereas the zero-field magnetic specific heat does not so vanish. Using 
an improved theory that puts in some short-range order above Tc modifies the spe-
cific heat somewhat, but even these improved theories [92] do not fit experiment 
well near Tc. Experiment appears to suggest (although this is not settled yet) that 
for many materials C ≅ ln |(T − Tc)| as T → Tc

+ (the exact solution of the specific 
heat of the two-dimensional Ising ferromagnet shows this type of divergence), and 
the concept of short-range order is just not enough to account for this logarithmic 
or near logarithmic divergence. Something must be missing. It appears that the 
missing concept that is needed to correctly predict the “critical exponents” and/or 
“critical divergences” is the concept of (anomalous) fluctuations. [The exponents 
1/3 and 4/3 above are critical exponents, and it is possible to set up the formalism in 
such a way that the logarithmic divergence is consistent with a certain critical ex-
ponent being zero.] Fluctuations away from the thermodynamic equilibrium ap-
pear to play a very dominant role in the behavior of thermodynamic functions near 
the phase transition. Critical-point behavior is discussed in more detail in the next 
section. 

Additional insight into this behavior is given by the Landau theory.19 The Lan-
dau theory appears to be qualitatively correct but it does not predict correctly the 
critical exponents. 

                                                           
19 See Kadanoff et al [7.35]. 
20 See Patterson et al [7.54] and references cited therein. 
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Critical Exponents and Failures of Mean-Field Theory (B) 

Although mean-field theory has been extraordinarily useful and in fact, is still the 
“workhorse” of theories of magnetism (as well as theories of the thermodynamics 
behavior of other types of systems that show phase transitions), it does suffer from 
several problems. Some of these problems have become better understood in re-
cent years through studies of critical phenomena, particularly in magnetic materi-
als, although the studies of “critical exponents” relates to a much broader set of 
materials than just magnets as referred to above. It is helpful now to define some 
quantities and to introduce some concepts. 

A sensitive test of mean-field theory is in predicting critical exponents, which 
define the nature of the singularities of thermodynamic variables at critical points 
of second-order phase transitions. For example, 

 
νβ

ξφ
−

−=−

c

c

c

c
T
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T

TT and~ , 

for T < Tc, where β, ν are critical exponents, φ is the order parameter, which for 
ferromagnets is the average magnetization M and ξ is the correlation length. In 
magnetic systems, the correlation length measures the characteristic length over 
which the spins are ordered, and we note that it diverges as the Curie temperature 
Tc is approached. In general, the order parameter φ is just some quantity whose 
value changes from disordered phases (where it may be zero) to ordered phases 
(where it is nonzero). Note for ferromagnets that φ is zero in the disordered para-
magnetic phase and nonzero in the ordered ferromagnetic situation. 

Mean-field theory can be quite good above an upper critical (spatial) dimension 
where by definition it gives the correct value of the critical exponents. Below the 
upper critical dimension (UCD), thermodynamic fluctuations become very impor-
tant, and mean-field theory has problems. In particular, it gives incorrect critical 
exponents. There also exists a lower critical dimension (LCD) for which these 
fluctuations become so important that the system does not even order (by defini-
tion of the LCD). Here, mean-field theory can give qualitatively incorrect results 
by predicting the existence of an ordered phase. The lower critical dimension is 
the largest dimension for which long-range order is not possible. In connection 
with these ideas, the notion of a universality class has also been recognized. Sys-
tems with the same spatial dimension d and the same dimension of the order pa-
rameter D are usually in the same universality class. Range and symmetry of the 
interaction potential can also play a role in determining the universality class. 
Quite dissimilar systems in the same universality class will, by definition, exhibit 
the same critical exponents. Of course, the order parameter itself as well as the 
critical temperature Tc, may be quite different for systems in the same universality 
class. In this connection, one also needs to discuss concepts like the renormaliza-
tion group, but this would take us too far afield. Reference can be made to excel-
lent statistical mechanics books like the one by Huang.21 

                                                           
21 See Huang [7.32, p441ff]. 
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Critical exponents for magnetic systems have been defined in the following 
way. First, we define a dimensionless temperature that is small when we are near 
the critical temperature. 

 cc TTTt /)( −= . 

We assume B = 0 and define critical exponents by the behavior of physical quanti-
ties such as M: 

Magnetization (order parameter): β||~ tM . 

Magnetic susceptibility: γχ −||~ t . 

Specific heat: α−||~ tC . 

There are other critical exponents, such as the one for correlation length (as noted 
above), but this is all we wish to consider here. Similar critical exponents are de-
fined for other systems, such as fluid systems. When proper analogies are made, if 
one stays within the same universality class, the critical exponents have the same 
value. Under rather general conditions, several inequalities have been derived for 
critical exponents. For example, the Rushbrooke inequality is 

 22 ≥++ γβα . 

It has been proposed that this relation also holds as an equality. For mean-field 
theory α = 0, β = 1/2, and γ = 1. Thus, the Rushbrooke relation is satisfied as an 
equality. However, except for α being zero, the critical exponents are wrong. For 
ferromagnets belonging to the most common universality class, experiment, as 
well as better calculations than mean field, suggest, as we have mentioned 
(Sect. 7.2.5), β = 1/3, and γ = 4/3. Note that the Rushbrooke equality is still satisfied 
with α = 0. The most basic problem mean-field theory has is that it just does not 
properly treat fluctuations nor does it properly treat a related aspect concerning 
short-range order. It must include these for agreement with experiment. As al-
ready indicated, short-range correlation gives a tail on the specific heat above Tc, 
while the mean-field approximation gives none. 

The mean-field approximation also fails as T → 0 as we have discussed. An 
elementary calculation from the properties of the Brillouin function shows that 
(s = 1/2) 

 )]/2exp(21[0 TTMM c−−= , 

whereas for typical ferromagnets, experiment agrees better with 

 )1( 2/3
0 aTMM −= . 

As we have discussed, this dependence on temperature can be derived from spin 
wave theory. 

Although considerable calculation progress has been made by high-tem-
perature series expansions plus Padé Approximants, by scaling, and renormaliza-
tion group arguments, most of this is beyond the scope of this book. Again, 
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Huang’s excellent text can be consulted.21 Tables 7.2 and 7.3 summarize some of 
the results. 

Table 7.2. Summary of mean-field theory 

Failures Successes 

Neglects spin-wave excitations near ab-
solute zero. 

Near the critical temperature, it does not 
give proper critical exponents if it is be-
low the upper critical dimension. 

May predict a phase transition where 
there is none if below the lower critical 
dimension. For example, a one-
dimension isotropic Heisenberg magnet 
would be predicted to order at a finite 
temperature, which it does not. 

Predicts no tail in the specific heat for 
typical magnets. 

Often used to predict the type of magnetic 
structure to be expected above the lower criti-
cal dimension (ferromagnetism, ferrimagnet-
ism, antiferromagnetism, heliomagnetism, 
etc.). 

Predicts a phase transition, which certainly will 
occur if above the lower critical dimension. 

Gives at least a qualitative estimate of the val-
ues of thermodynamic quantities, as well as the 
critical exponents – when used appropriately. 

Serves as the basis for improved calculations. 

The higher the spatial dimension, the better it 
is. 

Table 7.3. Critical exponents (calculated) 

 α β γ 

Mean field 0 0.5 1 

Ising (3D) 0.11 0.32 1.24 

Heisenberg (3D) –0.12 0.36 1.39 

Adapted with permission from Chaikin PM and Lubensky TC, 
Principles of Condensed Matter Physics, Cambridge University 
Press, 1995, p. 231. 

Two-Dimensional Structures (A) 

Lower-dimensional structures are no longer of purely theoretical interest. One 
way to realize two dimensions is with thin films. Suppose the thin film is of 
thickness t and suppose the correlation length of the quantity of interest is c. 
When the thickness is much less than the correlation length (t << c), the film will 
behave two dimensionally and when t >> c the film will behave as a bulk three-
dimensional material. If there is a critical point, since c grows without bound as 
the critical point is approached, a thin film will behave two-dimensionally near 
the two-dimensional critical point. Another way to have two-dimensional behav-
ior is in layered magnetic materials in which the coupling between magnetic lay-
ers, of spacing d, is weak. Then when c << d, all coupling between the layers can 
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be neglected and one sees 2D behavior, whereas if c >> d, then interlayer cou-
pling can no longer be neglected. This means with magnetic layers, a two-
dimensional critical point will be modified by 3D behavior near the critical tem-
perature. 

In this chapter we are mainly concerned with materials for which the three-
dimensional isotropic systems are a fairly good or at least qualitative model. 
However, it is interesting that two-dimensional isotropic Heisenberg systems can 
be shown to have no spontaneous (sublattice − for antiferromagnets) magnetiza-
tion [7.49]. On the other hand, it can be shown [7.26] that the highly anisotropic 
two-dimensional Ising ferromagnet (defined by the Hamiltonian H ∝ ∑i,j(nn.)σi

zσj
z, 

where the σs refer to Pauli spin matrices, the i and j refer to lattice sites) must 
show spontaneous magnetization. 

We have just mentioned the two-dimensional Heisenberg model in connection 
with the Mermin–Wagner theorem. The planar Heisenberg model is in some ways 
even more interesting. It serves as a model for superfluid helium films and pre-
dicts the long-range order is destroyed by formation of vortices [7.40]. 

Another common way to produce two-dimensional behavior is in an electronic 
inversion layer in a semiconductor. This is important in semiconductor devices. 

Spontaneously Broken Symmetry (A) 

A Heisenberg Hamiltonian is invariant under rotations, so the ensemble average of 
the magnetization is zero. For every M there is a −M of the same energy. Physi-
cally this answer is not correct since magnets do magnetize. The symmetry is 
spontaneously broken when the ground state does not have the same symmetry as 
the Hamiltonian, The symmetry is recovered by having degenerate ground states 
whose totality recovers the rotational symmetry. Once the magnet magnetizes, 
however, it does not go to another degenerate state because all the magnets would 
have to rotate spontaneously by the same amount. The probability for this to hap-
pen is negligible for a realistic system. Quantum mechanically in the infinite limit, 
each ground state generates a separate Hilbert space and transitions between them 
are forbidden—a super selection rule. Because of the symmetry there are excited 
states that are wave-like in the sense that the local ground state changes slowly 
over space (as in a wave). These are the Goldstone excitations and they are or-
thogonal to any ground state. Actually each of the (infinite) number of ground 
states is orthogonal to each other: The concept of spontaneously broken symmetry 
is much more general than just for magnets. For ferromagnets the rotational sym-
metry is broken and spin waves or magnons appear. Other examples include crys-
tals (translation symmetry is broken and phonons appear), and superconductors 
(local gauge symmetry is broken and a Higgs mode appears—this is related to the 
Meissner effect – see Chap. 8).22 

                                                           
22 See Weinberg [7.67]. 
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7.3  Magnetic Domains and Magnetic Materials (B) 

7.3.1  Origin of Domains and General Comments23 (B) 

Because of their great practical importance, a short discussion of domains is mer-
ited even though we are primarily interested in what happens in a single domain. 

We want to address the following questions: What are the domains? Why do 
they form? Why are they important? What are domain walls? How can we analyze 
the structure of domains, and domain walls? Is there more than one kind of do-
main wall? 

Magnetic domains are small regions in which the atomic magnetic moments 
are lined up. For a given temperature, the magnetization is saturated in a single 
domain, but ferromagnets are normally divided into regions with different do-
mains magnetized in different directions. 

When a ferromagnet splits into domains, it does so in order to lower its free en-
ergy. However, the free energy and the internal energy differ by TS and if T is 
well below the Curie temperature, TS is small since also the entropy S is small be-
cause the order is high. Here we will neglect the difference between the internal 
energy and the free energy. There are several contributions to the internal energy 
that we will discuss presently. 

Magnetic domains can explain why the overall magnetization can vanish even 
if we are well below the Curie temperature Tc. In a single domain the M vs. T 
curve looks somewhat like Fig. 7.16. 

 M 

TTc

H = 0

MS 

 
Fig. 7.16. M vs. T curve for a single magnetic domain 

For reference, the Curie temperature of iron is 1043 K and its saturation magneti-
zation MS is 1707 G. But when there are several domains, they can point in differ-
ent directions so the overall magnetization can attain any value from zero up to 
saturation magnetization. In a magnetic field, the domains can change in size 
(with those that are energetically preferred growing). Thus the phenomena of hys-
teresis, which we sketch in Fig. 7.17 starting from the ideal demagnetized state, 
can be understood (see Section Hysteresis, Remanence, and Coercive Force). 
                                                           
23 More details can be found in Morrish [68] and Chikazumi [7.11]. 
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In order for some domains to grow at the expense of others, the domain walls 
separating the two regions must move. Domain walls are transition regions that 
separate adjacent regions magnetized in different directions. The idea is shown in 
Fig. 7.18. 

We now want to analyze the four types of energy involved in domain forma-
tion. We consider (1) exchange energy, (2) magnetostatic energy, (3) anisotropy 
energy, and (4) magnetostrictive energy. Domain structures with the lower sum of 
these energies are the most stable. 

Exchange Energy (B) 

We have seen (see Section The Heisenberg Hamiltonian and its Relationship to 
the Weiss Mean-Field Theory) that quantum mechanics indicates that there may 
be an interaction energy between atomic spins Si that is proportional to the scalar 
product of the spins. From this, one obtains the Heisenberg Hamiltonian describ-
ing the interaction energy. Assuming J is the proportionality constant (called the 
exchange integral) and that only nearest-neighbor (nn) interactions need be con-
sidered, the Heisenberg Hamiltonian becomes 

 
,

(nn)              
i ji j

J= − ∑ S S⋅H , (7.232) 

 M

Ms = saturation magnetization

T << Tc

H

 
Fig. 7.17. M vs. H curve showing magnetic hysteresis 

 

domains

M

M

Wall

 
Fig. 7.18. Two magnetic regions (domains) separated by a domain wall, where size is ex-
aggerated 
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where the spin Si for atom i when averaged over many neighboring spins gives us 
the local magnetization. We now make a classical continuum approximation. For 
the interaction energy of two spins we write: 
 jiij JU SS ⋅2−= . (7.233) 

Assuming ui is a unit vector in the direction of Si we have since Si = Sui: 

 jiij JSU uu ⋅22−= . (7.234) 

If rji is the vector connecting spins i and j, then 
 ijiij )( uruu ∇⋅+= , (7.235) 

treating u as a continuous function r, u = u(r). Then since 

 )1(22)( 222
jijiijij uu uuuuuu ⋅⋅ −=−+=− , (7.236) 

we have, neglecting an additive constant that is independent of the directions of ui 
and uj, 

 22 )( ijij JSU uu −+= . 

So 
 22 )( ur ∇⋅jiij JSU += . (7.237) 

Thus the total interaction energy is 
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where we have inserted a 1/2 so as not to count bonds twice. If 
 kjiu 321 ααα ++= , 

where the αi are the direction cosines, for rji = ai, for example: 
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For a simple cubic lattice where we must also include neighbors at rji = ±aj and 
±ak, we have:24 
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JSU ααα ∇∇∇ , (7.240) 

                                                           
24 An alternative derivation is based on writing U ∝ ∑μiBi, where μi is the magnetic mo-

ment ∝ Si and Bi is the effective exchange field ∝ ∑j(nn) JijSj, treating the Sj in a contin-
uum spatial approximation and expanding Sj in a Taylor series (Sj = Si + a∂Si /∂x + etc. to 
2nd order). See (7.275) and following. 
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or in the continuum approximation: 
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For variation of M only in the y direction, and using spherical coordinates r, θ, φ, 
a little algebra shows that (M = M(r, θ, φ)) 
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where A = JS2/a and has the following values for other cubic structures (Afcc = 4A, 
and Abcc = 2A). We have treated the exchange energy first because it is this inter-
action that causes the material to magnetize. 

Magnetostatic Energy (B) 

We have already discussed magnetostatics in Sect. 7.2.2. Here we want to mention 
that along with the exchange interaction it is one of the two primary interactions 
of interest in magnetism. It is the driving mechanism for the formation of do-
mains. Also, at very long wavelengths, as we have mentioned, it can be the causa-
tive factor in spin-wave motion (magnetostatic spin waves). A review of magne-
tostatic fields of relevance for applications is given by Bertram [7.6]. 

Anisotropy (B) 

Because of various energy-coupling mechanisms, certain magnetic directions are 
favored over others. As discussed in Sect. 7.2.2, the physical origin of crystalline 
anisotropy is a rather complicated subject. As discussed there, a partial under-
standing, in some materials, relates it to spin-orbit coupling in which the orbital 
motion is coupled to the lattice. Anisotropy can also be caused by the shape of the 
sample or the stress it is subjected to, but these two types are not called crystalline 
anisotropy. Regardless of the physical origin, a ferromagnetic material will have 
preferred (least energy) directions of magnetization. For uniaxial symmetry, we 
can write 

 ∑−= i iaDH 2
anis )( Sk ⋅ , (7.243) 

where k is the unit vector along the axis of symmetry. If we let K1 = DaS2/a3, 
where a is the atom–atom spacing, then since sin2θ = 1 − cos2θ and neglecting un-
important additive terms, the anisotropy energy per unit volume is 

 θ2
1anis sinKu = . (7.244) 
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Also, for proper choice of K1, this may describe hexagonal crystals, e.g. cobalt 
(hcp) where θ is the angle between M and the hexagonal axis. Figure 7.19  shows 
some data related to anisotropy. Note Fe with a bcc structure has easy directions 
in 〈100〉 and Ni with fcc has easy directions in 〈111〉. 
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Fig. 7.19. Magnetization curves showing anisotropy for single crystals of iron with 3.85% 
silicon [Reprinted with permission from Williams HJ, Phys Rev 52, 1 (1937). Copyright 
1937 by the American Physical Society.] 

Wall Energy (B) 

The wall energy is an additive combination of exchange and anisotropy energy, 
which are independent. Exchange favors parallel moments and a wide wall. Ani-
sotropy prefers moments along an easy direction and a narrow wall. Minimizing 
the sum of the two determines the width of the wall. Consider a uniaxial ferro-
magnet with the magnetization varying only in the y direction. If the energy per 
unit volume is (using spherical coordinates, see, e.g., (7.242) and Fig. 7.25) 
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and α1, κ1 differ for different crystal structures, but both are approximately unity. 
For simplicity in what follows we will set α1 and κ1 equal to one. 
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Using δ∫wdy = 0 we get two Euler–Lagrange equations. Inserting (7.245) in the 
Euler–Lagrange equations, we get the results indicated by the arrows. 
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For Bloch walls by definition, φ = 0, which is a possible solution. The first equa-
tion (7.247) has a first integral of 
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1
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A , (7.249) 

which integrates in turn to 
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The effective wall width is obtained by approximating dθ/dy by its value at the 
midpoint of the wall, where θ = π/2. 
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so the wall width/a is 

 
J
D

a
π= widthwall . 

One can also show the wall width per unit area (perpendicular to the y-axis in 
Fig. 7.25) is 4(AK1)1/2. For Iron, the wall energy per unit area is of order 1 
erg/cm2, and the wall width is of order 500 Å. 

Magnetostrictive Energy (B) 

Magnetostriction is the variation of size of a magnetic material when its magneti-
zation varies. Magnetostriction implies a coupling between elastic and magnetic 
effects caused by the interaction of atomic magnetic moments and the lattice. The 
magnetostrictive coefficient λ is δl/l, where δl is the change in length associated 
with the magnetization change. In general λ can be either sign and is typically of 
the order of 10−5 or so. There may also be a change in volume due to changing 
magnetization. In any case the deformation is caused by a lowering of the energy. 
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Magnetostriction is a very complex matter and a detailed description is really 
outside the scope of this book. We needed to mention it because it has a bearing 
on domains. See, e.g., Gibbs [7.24]. 

Formation of Magnetic Domains (B) 

We now give a qualitative account of the formation of domains. Consider a cubic 
material, originally magnetized along an easy direction as shown in Fig. 7.20. Be-
cause the magnetization M and demagnetizing fields have opposite directions 
(7.136), this configuration has large magnetostatic energy. The magnetostatic en-
ergy can be reduced if the material splits into domains as shown in Fig. 7.21 
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Fig. 7.20. Magnetic domain formation within a material 

Since the density of surface poles is +M · n where nM is the outward normal, at 
an interface the net magnetic charge per unit area is 

 2)( 12 MnMM ⋅− , 

where nM2 is a unit vector pointing from region 1 to region 2. Thus when M · n is 
continuous, there are no demagnetizing fields (assuming also M is uniform in the 
interior). Thus (for typical magnetic materials with cubic symmetry) the magne-
tostatic energy can be further reduced by forming domains of closure, as shown in 
Fig. 7.22. The overall magnetostrictive and strain energy can be reduced by the 
formation of more domains of closure (see Fig. 7.23). That is, this splitting into 
smaller domains reduces the extra energy caused by the internal strain brought 
about by the spontaneous strain in the direction of magnetization. This process 
will not continue forever because of the increase in the wall energy (due to ex-
change and anisotropy). An actual material will of course have many imperfec-
tions as well as other complications that will cause irregularities in the domain 
structure. 
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Fig. 7.21. Magnetic-domain splitting within a material 
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Fig. 7.22. Formation of magnetic domains of closure 

 

 
Fig. 7.23. Formation of more magnetic domains of closure 

Hysteresis, Remanence, and Coercive Force (B) 

Consider an unmagnetized ferromagnet well below its Curie temperature. We can 
understand the material being unmagnetized if it consists of a large number of 
domains, each of which is spontaneously magnetized, but that have different di-
rections of magnetization so the net magnetization averages to zero. 

The magnetization changes from one domain to another through thin but finite-
width domain walls. Typically, domain walls are of thickness of about 10−7 meters 
or some hundreds of atomic spacings, while the sides of the domains are a few 
micrometers and larger. 

The hysteresis loop can be visualized by plotting M vs. H or B = μ0(H + M) (in 
SI) = H + 4πM (in Gaussian units) (see Fig. 7.24). The virgin curve is obtained by 
starting in an ideal demagnetized state in which one is at the absolute minimum of 
energy. 

When an external field is turned on, “favorable” domains have lower energy 
than “unfavorable” ones, and thus the favorable ones grow at the expense of the 
unfavorable ones. 

Imperfections determine the properties of the hysteresis loop. Moving a domain 
wall generally increases the energy of a ferromagnetic material due to a complex 
combination of interactions of the domain wall with dislocations, grain bounda-
ries, or other kinds of defects. Generally the first part of the virgin curve is re-
versible, but as the walls sweep past defects one enters an irreversible region, then 
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in the final approach to saturation, one generally has some rotation of domains. As 
H is reduced to zero, one is left with a remanent magnetization (in a metastable 
state with a “local” rather than absolute minimum of energy) at H = 0 and B only 
goes to zero at −Hc, the coercive “force”.25 For permanent magnetic materials, MR 
and Hc should be as large as possible. On the other hand, soft magnets will have 
very low coercivity. The hysteresis and domain properties of magnetic materials 
are of vast technological importance, but a detailed discussion would take us too 
far afield. See Cullity [7.16]. 

 
Fig. 7.24. Magnetic hysteresis loop identifying the virgin curve 

Hc ≡ coercive “force”. 
BR = remanence. 
Ms = [(B − H)/4π]H → ∞ = saturation magnetization. 
MR = BR /4π = remanent magnetization. 

Néel and Bloch Walls (B) 

Figure 7.25 provides a convenient way to distinguish Bloch and Néel walls. Bloch 
walls have φ = 0, while Néel walls have φ = π/2. Néel walls occur in thin films of 
materials such as permalloy in order to reduce surface magnetostatic energy as 
suggested by Fig. 7.26. There are many other complexities involved in domain-
wall structures. See, e.g., Malozemoff and Slonczewski [7.44]. 

                                                           
25 Some authors define Hc as the field that reduces M to zero. 
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Fig. 7.25. Bloch wall: φ = 0; Néel wall: φ = π/2 
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Fig. 7.26. Néel wall in thin film 

Methods of Observing Domains (EE, MS) 

We briefly summarize five methods. 

1. Bitter patterns–a colloidal suspension of particles of magnetite is placed on a 
polished surface of the magnetic material to be examined. The particles are at-
tracted to regions of nonuniform magnetization (the walls) and hence the walls 
are readily seen by a microscope. 

2. Faraday and Kerr effects–these involve rotation of the plane of polarization on 
transmission and reflection (respectively) from magnetic substances. 

3. Neutrons–since neutrons have magnetic moments they experience interaction 
with the internal magnetization and its direction, see Bacon GE, “Neutron Dif-
fraction,” Oxford 1962 (p355ff). 

4. Transmission electron microscopy (TEM)–Moving electrons are influenced by 
forces due to internal magnetic fields.  

5. Scanning electron microscopy (SEM)–Moving secondary electrons sample in-
ternal magnetic fields.  
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7.3.2  Magnetic Materials (EE, MS) 

Some Representative Magnetic Materials (EE, MS) 

Table 7.4. Ferromagnets 

Ferromagnets Tc (K) Ms (T = 0 K, Gauss) 

Fe 1043 1752 
Ni 631 510 
Co 1394 1446 
EuO 77 1910 
Gd 293 1980 

From Parker SP (ed), Solid State Physics Sourcebook, McGraw-Hill 
Book Co., New York, 1987, p. 225. 

Table 7.5. Antiferromagnets 

Antiferromagnets TN (K)  

MnO 122  
NiO 523  
CoO 293  

From Cullity BD, Introduction to Magnetic Materials, Addison-
Wesley Publ Co, Reading, Mass, 1972, p. 157. 

Table 7.6. Ferrimagnets 

Ferrimagnets Tc (K) Ms (T = 0 K, Gauss) 

YIG (Y3Fe5O12) 560 195   a garnet 
Magnetite (Fe3O4) 858 510   a spinel 

(From Solid State Physics Sourcebook, op cit p. 225) 

We should emphasize that these classes do not exhaust the types of magnetic order 
that one can find. At suitably low temperatures the heavy rare earths, may show 
helical or conical order. and there are other types of order, as for example, spin glass 
order. Amorphous ferromagnets show many kinds of order such as speromagnetic 
and asperomagnetic. (See, e.g., Solid State Physics Source Book, op cit p 89.) 

Ferrites are perhaps the most common type of ferrimagnets. Magnetite, the old-
est magnetic material that is known, is a ferrite also called lodestone. In general, fer-
rites are double oxides of iron and another metal such as Ni or Ba (e.g. nickel fer-
rite: NiOFe2O3 and barium ferrite: BaO·6Fe2O3). Many ferrites find application in 
high-frequency devices because they have high resistivity and hence do not have 
appreciable eddy currents. They are used in microwave devices, radar, etc. Barium 
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ferrite, a hard magnet, is one of the materials used for magnetic recording that is a 
very large area of application of magnets (see, e.g., Craik [7.15 p. 379]). 

Hard and Soft Magnetic Materials (EE, MS) The clearest way to distinguish 
between hard and soft magnetic materials is by a hysteresis loop (see Fig. 7.27). 
Hard permanent magnets are hard to magnetize and demagnetize, and their coer-
cive forces can be of the order of 106 A/m or larger. For a soft magnetic material, 
the coercive force can be of order 1 A/m or smaller. For conversions: 1 A/m is 4π 
× 10−3 Oersted, 1 kJ/m3 converts to MGOe (mega Gauss Oersted) if we multiply 
by 0.04π, 1Tesla = 104 G. 
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hard Hc
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Fig. 7.27. Hard and soft magnetic material hysteresis loops (schematic) 

Permanent Magnets (EE, MS) There are many examples of permanent mag-
netic materials. The largest class of magnets used for applications are permanent 
magnets. They are used in electric motors, in speakers for audio systems, as wig-
gler magnets in synchrotrons, etc. We tabulate here only two examples that have 
among the highest energy products (BH)max. 

Table 7.7. Permanent Magnets 

 Tc (K) Ms (kA m−1) Hc (kA m−1) (BH)max (kJ m−3) 

(1) SmCo5 997 768 700–800 183 
(2) Nd2Fe14B ~583 ― ~880 ~290 

(1) Craik [7.15 pp. 385, 387]. Sm2Co17 is in some respects better, see [7.15 p. 388]. 
(2) Solid State Physics Source Book op cit p 232. Many other hard magnetic materials 
are mentioned here such as the AlNiCos, barium ferrite, etc. See also Herbst [7.29]. 
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Soft Magnetic Materials (EE, MS) There are also many kinds of soft magnetic 
materials. They find application in communication materials, motors, generators, 
transformers, etc. Permalloys form a very common class of soft magnets. These 
are Ni-Fe alloys with sometimes small additions of other elements. 78 Permalloy 
means, e.g., 78% Ni and 22% Fe. 

Table 7.8. Soft Magnet 

 Tc (K) Hc (A m−1) Bs (T) 

78 Permalloy 873 4 1.08 

See Solid State Physics Source Book op cit, p. 231. There are several 
other examples such as high-purity iron. 

7.4  Magnetic Resonance and Crystal Field Theory 

7.4.1  Simple Ideas About Magnetic Resonance (B) 

This Section is the first of several that discuss magnetic resonance. For further de-
tails on magnetic resonance than we will present, see Slichter [91]. The technique 
of magnetic resonance can be used to investigate very small energy differences 
between individual energy levels in magnetic systems. The energy levels of inter-
est arise from the orientation of magnetic moments of the system in, for example, 
an external magnetic field. The magnetic moments can arise from either electrons 
or nuclei. 

Consider a particle with magnetic moment μ and total angular momentum J 
and assume that the two are proportional so that we can write 

 Jμ γ= , (7.252) 

where the proportionality constant γ is called the gyromagnetic ratio and equals 
−gμB/= (for electrons, it would be + for protons) in previous notation. We will 
then suppose that we apply a magnetic induction B in the z direction so that the 
Hamiltonian of the particle with magnetic moment becomes 

 zHJ00 γμ−=H , (7.253) 

where we have used (7.252), and B = μ0H, where H is the magnetic field. If we de-
fine j (which are either integers or half-integers) so that the eigenvalues of J2 are 
j(j + 1)=2, then we know that the eigenvalues of H0 are 

 HmEm 0μγ=−= , (7.254) 

where –j ≤ m ≤ j. 
From (7.254) we see that the difference between adjacent energy levels is deter-

mined by the magnetic field and the gyromagnetic ratio. We can induce transitions 
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between these energy levels by applying an alternating magnetic field (perpendicu-
lar to the z direction) of frequency ω, where 

 HH 00 ||or|| μγωμγω == == . (7.255) 

These results follow directly from energy conservation and they will be discussed 
further in the next section. It is worthwhile to estimate typical frequencies that are 
involved in resonance experiments for a convenient size magnetic field. For an 
electron with charge e and mass m, if the gyromagnetic ratio γ is defined as the ra-
tio of magnetic moment to orbital angular momentum, it is given by 

 0for,2/ <= emeγ . (7.256) 

For an electron with spin but no orbital angular momentum, the ratio of magnetic 
moment to spin angular momentum is 2γ = e/m. For an electron with both orbital 
and spin angular momentum, the contributions to the magnetic moment are as de-
scribed and are additive. If we use (7.255) and (7.256) with magnetic fields of or-
der 8000 G, we find that the resonance frequency for electrons is in the microwave 
part of the spectrum. Since nuclei have much greater mass, the resonance fre-
quency for nuclei lies in the radio frequency part of the spectrum. This change in 
frequency results in a considerable change in the type of equipment that is used in 
observing electron or nuclear resonance. 

Abbreviations that are often used are NMR for nuclear magnetic resonance and 
EPR or ESR for electron paramagnetic resonance or electron spin resonance. 

7.4.2  A Classical Picture of Resonance (B) 

Except for the concepts of spin-lattice and spin-spin relaxation times (to be dis-
cussed in the Section on the Bloch equations) we have already introduced many of 
the most basic ideas connected with magnetic resonance. It is useful to present a 
classical description of magnetic resonance [7.39]. This description is more picto-
rial than the quantum description. Further, it is true (with a suitable definition of 
the time derivative of the magnetic moment operator) that the classical magnetic 
moment in an external magnetic field obeys the same equations of motion as the 
magnetic moment operator. We shall not prove this theorem here, but it is because 
of it that the classical picture of resonance has considerable use. The simplest way 
of presenting the classical picture of resonance is by use of the concept of the ro-
tating coordinate system. It also should be pointed out that we will leave out of 
our discussion any relaxation phenomena until we get to the Section on the Bloch 
equations. 

As before, let a magnetic system have angular momentum J and magnetic mo-
ment μ, where μ = γJ. By classical mechanics, we know that the time rate of 
change of angular momentum equals the external torque. Therefore we can write 
for a magnetic moment in an external field H, 

 HμJ
0d

d μ×=
t

. (7.257) 
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Since μ = γJ (γ < 0 for electrons), we can write 

 Hμμ )(
d
d

0γμ×=
t

. (7.258) 

This is the general equation for the motion of the magnetic moment in an external 
magnetic field. 

To obtain the solution to (7.258) and especially in order to picture this solution, 
it is convenient to use the concept of the rotating coordinate system. Let 

 zyx AAA kjiA ˆˆˆ ++=  

be any vector, and let î , ĵ , k̂  be unit vectors in a rotating coordinate system. If Ω is 
the angular velocity of the rotating coordinate system relative to a fixed coordinate 
system, then relative to a fixed coordinate system we can show that 

 iΩi ˆ
d
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. (7.259) 

This implies that 

 AΩAA ×+=
tt δ

δ
d
d , (7.260) 

where δA/δt is the rate of change of A relative to the rotating coordinate system  
and dA/dt is the rate of change of A relative to the fixed coordinate system. 

By using (7.260), we can write (7.258) in a rotating coordinate system. The re-
sult is 

 )( 0HΩμμ γμ
δ
δ += ×

t
. (7.261) 

Equation (7.261) is the same as (7.258). The only difference is that in the rotating 
coordinate system the effective magnetic field is 

 
0

eff γμ
ΩHH += . (7.262) 

If H is constant and Ω is chosen to have the constant value Ω = −γμ0H, then 
δμ/δt = 0. This means that the spin precesses about H with angular velocity γμ0H. 
Note that this is the same as the frequency for magnetic resonance absorption. We 
will return to this point below. 

It is convenient to get a little closer to the magnetic resonance experiment by 
supposing that we have a static magnetic field H0 along the z direction and an al-
ternating magnetic field Hx(t) = 2H′cos(ωt) along the x-axis. We can resolve the 
alternating field into two rotating magnetic fields (one clockwise, one counter-
clockwise) as shown in Fig. 7.28. Simple vector addition shows that the two fields 
add up to Hx(t) along the x-axis. 

With the static magnetic field along the z direction, the magnetic moment will 
precess about the z-axis. The moment will precess in the same sense as one of the 
rotating magnetic fields. Now that we have both constant and alternating magnetic 
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fields, something interesting begins to happen. The component of the alternating 
magnetic field that rotates in the same direction as the magnetic moment is the im-
portant component [91]. Near resonance, the magnetic moment and one of the cir-
cularly polarized components of the alternating magnetic field rotate with almost 
the same angular velocity. In this situation the rotating magnetic field exerts an al-
most constant torque on the magnetic moment and tends to tip it over. Physically, 
this is what happens in resonance absorption. 

Let us be a little more quantitative about this problem. If we include only one 
component of the rotating magnetic field and if we assume that Ω is the cyclic 
frequency of the alternating magnetic field, then we can write 

 )]ˆˆ([ 00 HH
t

kiΩμμ +′+= γμ
δ
δ × . (7.263) 

This can be further written as 

 effHμμ ×=
tδ

δ , (7.264) 

where now 

 HH ′+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≡ ikH ˆˆ

0
0eff γμ

Ω . 

Since in the rotating coordinate system μ precesses about Heff, we have the picture 
shown in Fig. 7.29. If we adjust the static magnetic field so that 

 
0

0 γμ
Ω−=H , 

then we have satisfied the conditions of resonance. In this situation Heff is along 
the x-axis (in the rotating coordinate system) and the magnetic moment flops up 
and down with frequency γμ0H′. 

 

ωt

ωt

H1

H2

Hx(t)

|H1| = H′ 
|H2| = H′ 

y

x

 
Fig. 7.28. Decomposition of an alternating magnetic field into two rotating magnetic fields 
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Similar quantum-mechanical calculations can be done in a rotating coordinate 
system, but we shall not do them as they do not add much that is new. What we 
have done so far is useful in forming a pictorial image of magnetic resonance, but 
it is not easy to see how to put in spin-lattice interactions, or other important inter-
actions. In order to make progress in interpreting experiments, it is necessary to 
generalize our formalism somewhat. 

7.4.3  The Bloch Equations and Magnetic Resonance (B) 

These equations are used for a qualitative and phenomenological discussion of 
NMR and EPR. In general, however, it is easier to describe NMR than EPR. This 
is because the nuclei do not interact nearly so strongly with their surroundings as 
do the electrons. We shall later devote a Section to discussing how the electrons 
interact with their surroundings. 

The Bloch equations are equations that describe precessing magnetic moments, 
and various relaxation mechanisms. They are almost purely phenomenological, 
but they do provide us a means of calculating the power absorbed versus the fre-
quency. Without the interactions responsible for the relaxation times, this plot 
would be a delta function. Such a situation would not be very interesting. It is the 
relaxation times that give us information about what is going on in the solid.26 

Definition of Bloch Equations and Relaxation Times (B) 

The theory of the resonance of free spins in a magnetic field is simple but it holds 
little inherent interest. To relate to more physically interesting phenomena it is 
necessary to include the interactions of the spins with their environment. The 
Bloch equations include these interactions in a phenomenological way. 

                                                           
26 See Manenkov and Orbach (eds) [7.45]. 
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Fig. 7.29. Precession of the magnetic moment μ about the effective magnetic field Heff in a 
coordinate system rotating with angular velocity Ω about the z-axis 
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When we include a relaxation time (or an interaction process), we find that the 
time rate of change of the magnetization (along the field) is proportional to the 
deviation of the magnetization from its equilibrium value. This guarantees a re-
laxation of magnetization along the field. If we add an alternating magnetic field 
along the x- or y-axes, it is also necessary to add a term (M × H)z that is propor-
tional to the torque. Thus for the component of magnetization along the constant 
external magnetic field, it is reasonable to write 

 z
zz

T
MM

t
M ))((
d

d
0

1

0 HM ×γμ+−= . (7.265) 

As noted, (7.265) has a built-in relaxation process of Mz to M0, the spin-lattice re-
laxation time T1. However, as we approach equilibrium in a static magnetic field 
H0k̂ , we will want both Mx and My to tend to zero. For this purpose, a new term 
with a relaxation time T2 is often introduced. We write 

 
2

0 )(
d

d
T
M

t
M x

x
x −= HM ×γμ , (7.266) 

and 

 
2

0 )(
d

d
T
M

t
M y

y
y −= HM ×γμ . (7.267) 

Equations (7.265), (7.266), and (7.267) are called the Bloch equations. T2 is often 
called the spin-spin relaxation time. The idea is that the term involving T1 is 
caused by the interaction of the spin system with the lattice or phonons, while the 
term involving T2 is caused by something else. The physical origin of T2 is some-
what complicated. Consider, for example, two nuclei precessing in an external 
static magnetic field. The precession of one nucleus produces a varying magnetic 
field at the second nucleus and hence tends to “flip” the spin of the second nucleus 
(and vice versa). Waller27 first pointed out that there are two different types of 
spin relaxation processes. 

Ferromagnetic Resonance (B) 

Using a simple quantum picture, for an atomic system, we have already argued 
(see (7.258)) 

 adt
d Bμμ ×γ= , (7.268) 

where Ba = μ0H. This implies a precession of μ and M about the constant mag-
netic field Ba with frequency ω = γBa the Larmor frequency, as already noted. For 

                                                           
27 See Waller [7.66]. Discussion of ways to calculate T1 and T2 is contained in White [7.68 

p124ff and 135ff]. 
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ferromagnetic resonance (FMR) all spins precess together and M = Nμ, where N is 
the number of spins per unit volume. Thus by (7.268) 

 at
BMM ×γ=

d
d . (7.269) 

Several comments can be made. The above equation is valid also for M = M(r) 
varying slowly in space. We will also use this equation for spin-wave resonance 
when the wavelengths of the waves are long compared to the atom to atom spac-
ing that allows the classical approach to be valid. One generalizes the above equa-
tion by replacing Ba by B where 

B = Ba (applied) 
+ Brf (due to a radio-frequency applied field) 
+ Bdemag (from demagnetizing fields that depend on geometry) 
+ Bexchange (as derived from the Heisenberg Hamiltonian) 
+ Banisotropy (an effective field arising from interactions producing anisot-

ropy). 

We should also include dissipative or damping and relaxation effects. 
We start with all fields zero or negligible except for the applied field (note here 

Bexchange ∝ M, which is assumed to be uniform, so M × Bexchange = 0). This gives 
resonance at the natural precessional frequency of the uniform precessional mode. 
With B = B0k̂  we have 
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We look for solutions with 
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and so we have a solution provided 

 0
i

i

0

0 =
−
−−

ωγ
γω

B
B

, (7.272) 

or 

 0Bγω = , (7.273) 
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Fig. 7.30. (a) Thin film with magnetic field, (b) “Unpinned” spin waves, (c) “Pinned” spin 
waves 

which as expected is just the Larmor precessional frequency. In actual situations 
we also need to include demagnetization fields and hence shape effects, which 
will alter the resonant frequencies. FMR typically occurs at microwave frequen-
cies. Antiferromagnetic resonance (AFMR) has also been studied as a way to de-
termine anisotropy fields. 

Spin-Wave Resonance (A) 

Spin-wave resonance is a direct way to experimentally prove the existence of spin 
waves (as is inelastic neutron scattering – see Kittel [7.39 pp456-458]). Consider a 
thin film with a magnetic field B0 perpendicular to the film (Fig. 7.30a). In the 
simplest picture, we view the spin waves as “vibrations” in the spin between the 
surfaces of the film. Plotting the amplitude versus position, Fig. 7.30b is obtained 
for unpinned spins. Except for the uniform mode, these have no net interaction 
(absorption) with the electromagnetic field. The pinned case is a little different 
(Fig. 7.30c). Here only waves with an even number of half-wavelengths will show 
no net interaction energy with the field while the ones with an odd number of half-
wavelengths (n = 1, 3, etc.) will absorb energy. (Otherwise the induced spin flip-
pings will absorb and emit equal amounts of energy). 

We get absorption when 

 
{  odd,  thickness of film},

2
2 or (2 1) { 0,1, 2 }.
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With applied field normal to film and with demagnetizing field and exchange 
D′k2, absorption will occur for 

 (SI))( 2
000 kDMB ′+−= μγω , 

where M is the static magnetization in the direction of B0. The spin-wave fre-
quency is determined by both the FMR frequency (the first term including de-
magnetization) and the dispersion relation typical for spin waves. 
We now analyze spin-wave resonance in a little more detail. First we develop the 
Heisenberg Hamiltonian in the continuum approximation, 

 ex
2
1 ∑∑ −=−= iijiijJ BμSS ⋅⋅H  (7.274) 

defines the effective field Bi
ex acting on the moment at site i, μi = γSi. (γ < 0 for 

electrons) 

 .2ex ∑= j jiji J SB
γ

 (7.275) 

Assuming nearest neighbors (nn) at distance a and nn interactions only. We find 
for a simple cubic (SC) structure after expansion, and using cancellation resulting 
from symmetry 

 .212 22ex
iii JaJ SSB ∇+=γ  

Consistent with the classical continuum approximation 

 ,
SM

iSM =  (7.276) 

 ),/(2ex MK MMB ∇′+= λ  (7.277) 

where 

 .2 ,12 2

γγ
λ SJaK

M
JS =′=  (7.278) 

As an aside we note Bex is consistent with results obtained before (Sect. 7.3.1). 
Since 

 ,ex
2
1 ∑−= iiU Bμ ⋅  (7.279) 

neglecting constant terms (resulting from the magnitude of the magnetization be-
ing constant) we have 

 }./{d2
2

MV
a

JSU Mmmm =∇−= ∫  (7.280) 
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Fig. 7.31. Spin wave resonance spectrum for Ni film, room temperature, 17 GHz. After 
Puszharski H, “Spin Wave Resonance”, Magnetism in Solids Some Current Topics, Scot-
tish Universities Summer School in Physics, 1981, p. 287, by permission of SUSSP. Origi-
nal data in Mitra DP and Whiting JSS, J Phys F: Metal Physics, 8, 2401 (1978) 

Assuming ∫mx∇mx·dA etc = 0 for a large surface we can also recast the above as 

 ])()()[( 2
3

2
2

2
1

2
∫ ∇+∇+∇= dV

a
JSU ααα  (7.281) 

which is the same as we obtained before, with a slightly different analysis. The αi 
are of course the direction cosines. 

The anisotropy energy and effective field can be written in the same way as be-
fore, and no further comments need be made about it. 

When one generalizes the equation for the time development of M, one has the 
Landau–Lifshitz equations. Damping causes broadening of the absorption lines. 
Then 

 )( effeff BMMBMM ×××
M
αγ +=� , (7.282) 
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where α is a constant characterizing the damping. Spin-wave resonance has been 
observed as shown in Fig. 7.31. The integers label the modes of excitation. The 
figure is complicated by surface spin waves that are labeled 2, 1 and not fully re-
solved. Reference to the original paper must be made for complete details. 

We have discussed Beff in the Section on FMR. Allowing M to vary with r and 
using the pinned boundary conditions, (7.282) can be used to quantitatively dis-
cuss SWR. 

7.4.4  Crystal Field Theory and Related Topics (B) 

This Section is primarily related to EPR. The general problem is to analyze the ef-
fects of neighboring ions on paramagnetic ions in a crystal. This cannot be exactly 
solved, and so we must seek physically reasonable simplifying assumptions. 

Some atoms or ions when placed in a crystal act as if they undergo very little 
change. When this is so, we can predict the changes by perturbation theory. In or-
der to estimate the perturbing effects of a host crystal on a paramagnetic ion, we 
ought to be able to treat the host crystal fairly crudely. For example, for an ionic 
crystal it might be sufficient to treat the ions as point charges. Then it would be 
fairly simple to estimate the change in the potential at the paramagnetic ion due to 
the host crystal. This potential energy could serve as a perturbation on the Hamil-
tonian of the paramagnetic ion. 

Another simplification is possible. The crystal potential must have the symme-
try of the point group describing the surroundings of the paramagnetic ion. As we 
will discuss later, group theory is useful in taking this into account. 

The effect of the crystal field is to split the energy levels of a paramagnetic ion. 
In order to show how this comes about, it is useful to know what we mean by the 
energy levels. The best way to do this is to write down the Hamiltonian (whose 
eigenvalues are the energy levels) for the electrons. With no external field, the 
Hamiltonian has a form similar to 
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 (7.283) 

The origin of the coordinate system for (7.283) is the nucleus of the paramag-
netic ion. The sum over i and j is a sum over electronic coordinates. The first term is 
the kinetic energy. The second term is the potential energy of the electrons in the 
field of the nucleus. The third term is the hyperfine interaction of the electron (with 
total angular momentum Ji) with the nucleus that has angular momentum I. The 
fourth term is the crystal field energy. The fifth term is the potential energy of the 
electrons interacting with themselves. The last term is the spin (Sj)-orbit (angular 
momentum Li) interaction (see Appendix F) of the electrons. By the unperturbed 
energy levels of the paramagnetic ion, one often means the energy eigenstates of the 
first, second, and fifth terms obtained perhaps by Hartree–Fock calculations. The 
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rest of the terms are usually thought of as perturbations. In the discussion that fol-
lows, the hyperfine interaction will be neglected. 

To avoid complicated many-body effects, we will assume that the sources of 
the crystal field (Ec ≡ −∇φc) are external to the paramagnetic ion. Thus in the vi-
cinity of the paramagnetic ion, it can be assumed that ∇2φc = 0. 

Weak, Medium, and Strong Crystal Fields (B) 

In discussing the effect of the crystal field on the energy levels, which is important 
to EPR, three cases can be distinguished [47]. 

Weak crystal fields are by definition those for which the spin-orbit interaction 
is stronger than the crystal field interaction. This is often realized when the elec-
trons of the paramagnetic shell of the ion lie “fairly deep” within the ion, and 
hence are shielded from the crystalline field by the outer electrons. This may hap-
pen in ionic compounds of the rare earths. Rare earths have atomic numbers (Z) 
from 58 to 71. Examples are Ce, Pr, and Ne, which have incomplete 4f shells. 

By a medium crystal field we mean that the crystal field is stronger than the 
spin-orbit interaction. This happens when the paramagnetic electrons of the ion 
are mainly distributed over the outer portions of the ion and hence are not well 
shielded. In this situation something else may occur. The potential that the para-
magnetic ions move in is no longer even approximately spherically symmetric, 
and hence the orbital angular momentum is not conserved. We say that the orbital 
angular momentum is (at least partially) “quenched” (this means 〈ψ|L|ψ〉 = 0, 〈
ψ|L2|ψ〉 ≠ 0). Paramagnetic crystals that have iron group elements (Z = 21 to 29, 
e.g., Cr, Mn, and Fe that have an incomplete 3d shell) are typical examples of the 
medium-field case. 

Strong crystal field by definition means covalent bonding. In this situation, the 
wave functions for the paramagnetic ion electrons overlap considerably with the 
wave functions of the other electrons of the crystal. Crystal field theory does not 
work here. This type of situation will not be discussed in this chapter. 

As we will see, group theory can be an aid in understanding how energy levels 
are split by perturbations. 

Miscellaneous Theorems and Facts (In Relation to Crystal Field 
Theory) (B) 

The theorems below will not be proved. They are stated because they are useful in 
carrying out actual crystal field calculations. 

The Equivalent Operator Theorem. This theorem is used in calculating needed 
matrix elements in crystal field calculations. The theorem states that within a 
manifold of states for which l is constant, there are simple relations between the 
matrix elements of the crystal-field potential and appropriate angular momentum 
operators. For constant l, the rule says to replace the x by Lx (operator, in this case 
Lx is the x operator equivalent) and so forth for other coordinates. If the result is a 
product in which the order of the factors is important, then we must use all possi-
ble different permutations. There is a similar rule for manifolds of constant J 



444      7 Magnetism, Magnons, and Magnetic Resonance 

 

(where we include both the orbital angular momentum and the spin angular mo-
mentum). 

There is a straightforward way of generating operator equivalents (OpEq) by 
using 

 1  ]  ,[ ++ ∝ M
l

M
l YEqOpYEqOpL , 

and 

 1  ]  ,[ −− ∝ M
l

M
l YEqOpYEqOpL . (7.284) 

The constants of proportionality can be computed from a knowledge of the 
Clebsch–Gordon coefficients. 

Table 7.4. Effective magneton number for some representative trivalent lanthanide ions 

Ion Configuration Ground state )1( +JJg * 

Pr (3+) …4f 2 5s2 5p6 3H4 3.58 

Nd (3+) …4f 3 5s2 5p6 4I9/2 3.62 
Gd (3+) …4f 7 5s2 5p6 8S7/2 7.94 
Dy (3+) …4f 9 5s2 5p6 6H15/2 10.63 

*
)1(2

)1()1()1(1)Lande(
+

+−++++==
JJ

LLSSJJgg  

Table 7.5. Effective magneton number for some representative iron group ions* 

Ion Configuration Ground state )1(2 +SS  

Fe (3+) …3d5 6S5/2 5.92 
Fe (2+) …3d6 5D4 4.90 
Co (2+) …3d7 4F9/2 3.87 
Ni (2+) …3d8 3F4 2.83 

* Quenching with J = S, L = 0 (so g = 2) is assumed for better 
agreement with experiment 

Kramers’ Theorem. This theorem tells us about systems that must have a degener-
acy. The theorem says that the systems with an odd number of electrons on which 
a purely electrostatic field is acting can have no energy levels that are less than 
two-fold degenerate. If a magnetic field is imposed, this two-fold degeneracy can 
be lifted. 

Jahn–Teller effect. This effect tells us that high degeneracy may be unlikely. The 
theorem states that a nonlinear molecule that has a (orbitally) degenerate ground 
state is unstable, and tends to distort itself so as to lift the degeneracy. Because of 
the Jahn–Teller effect, the symmetry of a given atomic environment in a solid is 
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frequently slightly different from what one might expect. Of course, the Jahn–
Teller effect does not remove the fundamental Kramers’ degeneracy. 

Hund’s rules. Assuming Russel–Sanders coupling, these rules tell us what the 
ground state of an atomic system is. Hund’s rules were originally obtained from 
spectroscopic evidence, but they have been confirmed by atomic calculations that 
include the Coulomb interactions between electrons. The rules state that in figur-
ing out how electrons fill a shell in the ground state we should (1) assign a maxi-
mum S allowed by the Pauli principle, (2) assign maximum L allowed by S, (3) 
assign J = L − S when the shell is not half-full, and J = L + S when the shell is 
over half-full. See Problems 7.17 and 7.18. Results from the use of Hund’s rules 
are shown in Tables 7.9 and 7.10. 

Energy-Level Splitting in Crystal Fields by Group Theory (A) 

In this Section we introduce enough group theory to be able to discuss the relation 
between degeneracies (in the energies of atoms) and symmetries (of the environ-
ment of the atoms). The fundamental work in the field was done by H. A. Bethe 
(see, e.g., Von der Lage and Bethe [7.64]). For additional material see Knox and 
Gold [61, in particular see Table 1-2 pp. 5-8 for definitions]. 

We have already discussed some of the more elementary ideas related to 
groups in Chap. 1 (see Sect. 1.2.1). The most important new concept that we will 
introduce here is the concept of group representations. A group representation 
starts with a set of nonsingular square matrices. For each group element gi there is 
a matrix Ri such that gigj = gk implies that RiRj = Rk. Briefly stated, a representa-
tion of a group is a set of matrices with the same multiplication table as the origi-
nal group. 

Two representations (R′, R) of g that are related by 

 SgRSgR )()( 1−=′  (7.285) 

are said to be equivalent. In (7.285), S is any nonsingular matrix. 
We define 
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In (7.286) we say that the representation R(g) is reducible because it can be re-
duced to the direct sum of at least two representations. If R(g) is of the form 
(7.286), it is said to be in block diagonal form. If a matrix representation can be 
brought into block diagonal form by a similarity transformation, then the represen-
tation is reducible. If no matrix representation reduces the representation to block 
diagonal form, then the matrix representation is irreducible. In considering any 
representation that is reducible, the most interesting information is to find out 
what irreducible representations are contained in the given reducible representa-
tion. We should emphasize that when we say a given representation R(g) is re-
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ducible, we mean that a single S in (7.285) will put R′(g) in block diagonal form 
for all g in the group. 

In a typical problem in crystal field theory, a reducible representation (with re-
spect to some group) of interest might be the irreducible representation R(l) of the 
three-dimensional rotation group. That is, we would like to know what irreducible 
representations of a group of interest is contained in a given irreducible represen-
tation of R(l) for some l. As we will see later, this can tell us a good deal about 
what happens to the electronic energy levels of a spherical atom in a crystal field. 

It is worthwhile to give an explicit example of the irreducible representations of 
a group. Let us consider the group D3 already defined in Chap. 1 (see Table 1.2). 

In Table 7.6 note that R(1) and R(2) are unfaithful (many elements of the group 
correspond to the same matrix) representations while R(3) is a faithful (there is a 
one-to-one correspondence between group elements and matrices) representation. 
R(1) is, of course, the trivial representation. 

Table 7.6. The irreducible representations of D3 

D3 g1 g2 g3 g4 g5 g6 

R(1) 1 1 1 1 1 1 
R(2) 1 1 1 −1 −1 −1 
R(3) 
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Since a similarity transformation will induce so many equivalent irreducible 
representations, a quantity that is invariant to similarity transformation might be 
(and in fact is) of considerable interest. Such a quantity is the character. The char-
acter of a group element is the trace of the matrix representing that group element. 

It is elementary to show that the trace is invariant to similarity transformation. 
A similar argument shows that all group elements in the same class28 have the 
same character. The argument goes as indicated below: 

 ))((Tr))((Tr))((Tr))((Tr 11 gRSgRSSSgRgR ′=== −− , 

if R′(g) is defined by (7.285). 
In summary the characters are defined by 

 ∑= α ααχ )()( )()( gRg ii . (7.287) 

Equation (7.287) defines the character of the group element g in the ith representa-
tion. The characters still serve to distinguish various representations. As an exam-
ple, the character table for the irreducible representation of D3 is shown in Table 
7.7. In Table 7.7, the top row labels the classes. 

                                                           
28 Elements in the same class are conjugate to each other that means if g1 and g2 are in the 

same class there exists a g ∈ G ∋ g1 = g–1g2g. 
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Table 7.7. The character table of D3 

C1 C2 C3 

g1 g2 g3 g4 g5 g6 

χ(1)    1 
χ(2)    1 
χ(3)    2 

1 
1 

−1 

1 
1 

−1 

1 
−1 

0 

1 
−1 

0 

1 
−1 

0 

Below we summarize some important rules for constructing the character table 
for the irreducible representations. These results will not be proved, since they are 
readily available.29 These rules are: 

1. The number of classes s in the group is equal to the number of irreducible rep-
resentations of the group. 

2. If ni is the dimension of the ith irreducible representation, then ni = χi(E), where 
E is the identity of the group and ∑ l

s ni
2 = h, where h is the order of the group G. 

For small finite groups, this rule obviously greatly restricts what the ni can be. 

3. If Bk is the number of group elements in the class Ck, then the characters for 
each class obey the relationship 

 j
l

s
k k

j
k

l
k hCCB δχχ =∑ =

∗
1

)()( )()( , 

where δl
j is the Kronecker delta. This relation is often called the orthogonality 

relation for characters. 

4. Suppose the order of a group element g is m (i.e. suppose gm = E). Further sup-
pose that the dimension of a representation (which need not be irreducible) is n. 
It then follows that χ(g) equals the sum of n, mth roots of unity. 

5. The one-dimensional representation is always present. 

Finally it is worth giving the criterion for determining the irreducible represen-
tations in a given reducible representation. The rule is if 

 ∑ ′= i
i

iRCR , (7.288) 

then C ′i  (which is the number of times that irreducible representation i appears in 
the reducible representation R) is given by 

 ∑ ∗=′ k kk
i

ki CCBhC )()()/1( )( χχ , (7.289) 

where χ denotes character relative to R and the sum over k is a sum over classes. 
When a reducible representation is expressible in the form (7.288) it is said to be 
in, reduced form. Putting it into such a form as (7.288) is called reduction. 

                                                           
29 See Mathews and Walker [7.47]. 
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A frequent use of these results occurs when the representation R is formed by 
taking direct products (see Sect. 1.2.1 for a definition) of the representations R(i). 
We can then evaluate (7.289) by remembering that the trace of a direct product is 
the product of the traces. 

There are many ways that group theory has been used as an aid in actual calcu-
lations. No doubt there remain other ways that have not yet been discovered. The 
basic ideas that we will use in our physical calculations involve: 

1. The physical system determines a symmetry group with irreducible representa-
tions that can be found by group theory. 

2. Except for what is called by definition “accidental degeneracy” we have a dis-
tinct eigenvalue for each (occurrence of an) irreducible representation. (It is 
possible for the same irreducible representation to occur many times. The 
meaning of the word “occur” will be given later.) 

3. The dimension of the irreducible representation is the degeneracy of each cor-
responding eigenvalue. 

For a brief insight into the above, let the eigenfunctions of H corresponding to 
the eigenvalue En be labeled ψni(i → 1 to d). En is thus d-fold degenerate. Thus 
 ninni E ψψ =H . (7.290) 

If g is an element of the symmetry group G, it follows that 
 0],[ =Hg . (7.291) 

From this, 
 )()( ninni gEg ψψ =H . (7.292) 

Comparing (7.290) and (7.291), we see that 

 ∑ == d
i in

n
ini Cg 1 ψψ . (7.293) 

It can be shown that C 
i
n  matrices are a representation of the group G. We thus have 

the desired connection between energy levels, degeneracy, and representations. 
Let us consider the physically interesting problem of an atom with one 4f elec-

tron. Let us place this atom in a potential with trigonal symmetry. The group ap-
propriate to trigonal symmetry is our old friend D3. We want to neglect spin and 
discover what happens (or may happen) to the 4f energy levels when the atom is 
placed in a trigonal field. This is a problem that could be directly attacked by per-
turbation theory, but it is interesting to see what type of statements can be made 
by the group theory. 

If you think a little about the ideas we have introduced and about our problem, 
you should come to the conclusion that what we have to find is the irreducible 
representations of D3 generated by (in previous notation) ψ(4f)i. Here i runs from 1 
to 7. This problem can be solved by using (7.289). 
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The first thing we need to know is the character of our rotation group. This is 
given by [61] for the lth irreducible representation 

 
)2/sin(

])sin[(
)( 2

1
)(

φ
φ

φχ
+

=
ll . (7.294) 

In (7.294), φ is an appropriate rotation angle. Since we are dealing with a 4f level 
we are interested only in the case l = 3: 

 
)2/sin(
)2/7sin()()3(

φ
φφχ = . (7.295) 

By (7.289), we need to evaluate (7.294) only for φ in each of the three classes of 
D3. Since the classes of D3 correspond to the identity, three-fold rotations and 
two-fold rotations, we have 

 7)0()3( =χ , (7.296a) 

 1)3/2()3( +=πχ , (7.296b) 

 1)()3( −=πχ . (7.296c) 

Table 7.13. Character table for calculating iC′  

 C1 C2 C3 

Bk 1 2 3 

χ(1) 
D3  χ(2) 

χ(3) 

1 
1 
2 

1 
1 

−1 

1 
−1 

0 

Rotation Group  χ(3) 7 +1 −1 

We can now construct Fehler! Verweisquelle konnte nicht gefunden werden.. 
Applying (7.289) we have 
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Thus 

 )2()1()3( 22 RRRR ++= . (7.297) 
By (7.297) we expect the 4f level to split into two doubly degenerate levels plus 
three nondegenerate levels. The two levels corresponding to R(3) that occur twice 
and the two R(2) levels will probably not have the same energy. 
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7.5  Brief Mention of Other Topics 

7.5.1  Spintronics or Magnetoelectronics (EE)30 

We are concerned here with spin-polarized transport for which the name spintron-
ics is sometimes used. We need to think back to the ideas of band ferromagnetism 
as contained for example in the Stoner model. Here one assumes that an exchange 
interaction can cause the spin-up and spin-down density of states to split apart as 
shown in the schematic diagram (for simplicity we consider that the majority spin-
up band is completely filled). Thus, the number of electrons at the Fermi level 
with spin up (Nup) can differ considerably from the number with spin down 
(Ndown). See (7.242) and Fig. 7.32 (spins and moments have opposite directions 
due to the negative charge of the electron – the spins are drawn in the bands). This 
results in two phenomena: (a) a net magnetic moment, and (b) a net spin polariza-
tion in transport defined by 

 
downup

downup

NN
NN

P
+
−

= . (7.298) 

Fe, Ni, and Co typically have P of order 50%. 
In the figures, the D(E) describe the density of states of up and down spins. As 

shown also in Fig. 7.33 one can use this idea to produce a “spin valve,” which 
preferentially transmits electrons with one spin direction. Spin valves have many 
possible device applications (see, e.g., Prinz [7.55]). In Fig. 7.33 we show trans-
port from a magnetized metal to a magnetized metal through a nonmagnetic metal. 

                                                           
30 A comprehensive review has recently appeared, Zutic et al [7.73]. 
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Fig. 7.32. Exchange coupling causes band ferromagnetism. The D are the density of states 
of the spin-up and spin-down bands. EF is the Fermi energy. Adapted from Prinz [7.55] 
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The two ferromagnets are still exchange coupled through the metal separating 
them. For the case of the second metal being antialigned with the first, the current 
is reduced and the resistance is high. The electrons with moment up can go from 
(a) to (b) but are blocked from (b) to (c). The moment-down electrons are inhib-
ited from movement by the gap from (a) to (b). If the second magnetized metal 
were aligned, the resistance would be low. Since the second ferromagnet’s mag-
netization direction can be controlled by an external magnetic field, this is the 
principle used in GMR (giant magnetoresistance, discovered by Baibich et al in 
1988). See Baibich et al [7.4]. 

EF

E E E 

magnetized metal non-magnetic metal magnetized metal

(a) (b) (c)

electrons

Blocked

electrons

 
Fig. 7.33. Due to preferential transmission of spin orientation, the resistance is high if the 
second ferromagnet is antialigned. Adapted from Prinz [7.55] 

One should note that spintronic devices are possible because the spin diffusion 
length that is the square root of the diffusion constant times the spin relaxation time 
can be fairly large, e.g. 0.1 mm in Al at 40 K. This means that the spin polarization 
of the transport will typically last over these distances when the polarized current is 
injected into a nonmagnetized metal or semiconductor. Only in 1988 was it realized 
that electronic current flowing into an ordinary metal from a ferromagnet could pre-
serve spin, so that spin could be transported just as charge is. 

We should also mention that control of spin is important in efforts to achieve 
quantum computing. Quantum computers perform a series of sequences of unitary 
transformation on sets of “qubits” – see Bennett [7.5] for a definition. In essence, 
this holds out the possibility of something like massive parallel computation. Quan-
tum computing is a huge subject; see, e.g., Bennett [7.5]. 

Hard Drives (EE) 

In 1997 IBM introduced another innovation – the giant magnetoresistance (GMR) 
read head for use in magnetic hard drives – in which magnetic and nonmagnetic 
materials are layered one in the read head, roughly doubling or tripling its sensi-
tivity. By layering one can design the device with the desired GMR properties. 
The device works on the quantum-mechanical principle, already mentioned, that 



452      7 Magnetism, Magnons, and Magnetic Resonance 

 

when the layers are magnetized in the same direction, the spin-dependent scatter-
ing is small, and when the layers are alternatively magnetized in opposite direc-
tions, the electrons experience a maximum of spin-dependent scattering (and 
hence much higher resistivity). Thus, magnetoresistance can be used to read the 
state of a magnetic bit in a magnetic disk drive. The direction of soft layer in the 
read head can be switched by the direction of the magnetization in the storing me-
dia. The magnetoresistance is thus changed and the direction of storage is then 
read by the size of the current in the read head. Sandwiches of Co and Cu can be 
used with the widths of the layers typically of the order of nanometers (a few at-
oms say) as this is the order of the wavelength of electrons in solids. More gener-
ally, magnetic multilayers of ferromagnetic materials (e.g. 3d transition metal 
ferromagnets) with nonferromagnetic spacers are used. The magnetic coupling be-
tween layers can be ferromagnetic or antiferromagnetic depending on spacing. 
Stuart Parkin of IBM has been a pioneer in the development of the GMR hard disk 
drive [7.52] 

Magnetic Tunnel Junctions (MTJs) (EE) 

Here the spacer in a sandwich with two ferromagnetic layers is a thin insulating 
layer. One difficulty is that it is difficult to make thin uniform insulators. Another 
difficulty, important for logic devices, is that the ferromagnetic layers need to be 
ferromagnetic semiconductors (rather than metals with far more mobile electrons 
than in semiconductors) so that a large fraction of the spin-aligned electrons can 
get into the rest of the device (made of semiconductors). GaMnAs and TiCoO2 are 
being considered for use as ferromagnetic semiconductors for these devices. 

The tunneling current depends on the relative magnetization directions of the 
ferromagnetic layers. It should be mentioned here that in the usual GMR struc-
tures the current typically flows parallel to the layers (but electrons undergo a ran-
dom walk, and sample more than one layer so GMR can still operate), while in a 
MTJ sandwich the current typically flows perpendicular to the layers. 

For the typical case, the resistance of the MTJ is lower when the moments of the 
ferromagnetic layers are aligned parallel and higher when the moments are antipar-
allel. This produces tunneling magnetic resistance TMR that may be 40% or so lar-
ger than GMR. MTJ holds out the possibility of making nonvolatile memories. 

Spin-dependent tunneling through the FM-I-FM (ferromagnetic-insulator-ferro-
magnetic) sandwich had been predicted by Julliere [7.34] and Slonczewski [7.61]. 

Colossal Magnetoresistance (EE) 

Magnetoresistance (MR) can be defined as 

 
)0(

)0()(MR
ρ

ρρ −= H , (7.299) 

where ρ is the resistivity and H is the magnetic field. 
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Typically, MR is a few per cent, while GMR may be a few tens of per cent. 
Recently, materials with so-called colossal magnetoresistance (CMR) of 100 per 
cent or more have been discovered. CMR occurs in certain oxides of manganese – 
manganese perovskites (e.g. La0.75Ca0.25MnO3). Space does not permit further dis-
cussion here. See Fontcuberta [7.23]. See also Salamon and Jaime [7.58]. 

7.5.2  The Kondo Effect (A) 

Scattering of conduction electrons by localized moments due to s-d exchange can 
produce surprising effects as shown by J. Kondo in 1964. Although, this would 
appear to be a very simple basic phenomena that could be easily understood, at 
low temperature Kondo carried the calculation beyond the first Born approxima-
tion and showed that as the temperature is lowered the scattering is enhanced. This 
led to an explanation of the old problem of the resistance minimum as it occurred 
in, e.g., dilute solutions of Mn in Cu. 

The Kondo temperature is defined as the temperature at which the Kondo effect 
clearly appears and for which Kondo’s result is valid (see (7.301)). It is given ap-
proximately by 

 ⎟
⎠
⎞

⎜
⎝
⎛−=

nJ
JET Fk

1exp , (7.300) 

where Tk is the Kondo temperature, EF is the Fermi energy, J characterizes the 
strength of  the exchange interaction, and n is the density of states. Generally Tk is 
below the resistance minimum that can be estimated from the approximate expres-
sion giving the resistivity ρ, 

 5)ln( cTTba +−=ρ . (7.301) 

The ln(T) term contains the spin-dependent Kondo scattering and cT5 character-
izes the resistivity due to phonon scattering at low temperature (the low tempera-
ture is also required for a sharp Fermi surface), and a, b and c are constants with b 
being proportional to the exchange interaction. This leads to a resistivity minimum 
at approximately 
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In actual practice the Kondo resistivity does not diverge at extremely low tem-
peratures, but rather at temperatures well below the Kondo temperature, the resis-
tivity approaches a constant value as the conduction electrons and impurity spins 
form a singlet. Wilson has used renormalized group theory to explain this. There 
are actually three regimes that need to be distinguished. The logarithmic regime is 
above the Kondo temperature, the crossover region is near the Kondo temperature, 
and the plateau of the resistivity occurs at the lowest temperatures. To discuss this 
in detail would take us well beyond the scope of this book. See, e.g., Kirk WP, 
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“Kondo Effect,” pp. 162-165 in [24] and references contained therein. Using 
quantum dots as artificial atoms and studying them with scanning tunneling mi-
croscopes has revived interest in the Kondo effect. See Kouwenhoven and 
Glazman [7.41]. 

7.5.3  Spin Glass (A) 

Another class of order that may occur in magnetic materials at low temperatures is 
spin glass. The name is meant to suggest frozen in (long-range) disorder. Experimen-
tally the onset of a spin glass is signaled by a cusp in the magnetic susceptibility at Tf 
(the freezing temperature) in zero magnetic field. Below Tf there is no long-range or-
der. The classic examples of spin glasses are dilute alloys of iron in gold (Au:Fe, also 
Cu:Mn, Ag:Mn, Au:Mn and several other examples). The critical ingredients of a 
spin glass seem to be (a) a competition among interactions as to the preferred direc-
tion of a spin (frustration), and (b) a randomness in the interaction between sites (dis-
order). There are still many questions surrounding spin glasses such as do they have a 
unique ground state and if the spin glass transition is a true phase transition to a new 
state (see Bitko [7.7]). 

For spin glasses, it is common to define an order parameter by summing over 
the average spin’s squared: 

 ∑ == N
i iN

q 1
21 S , (7.303) 

and for T > Tf, q = 0, while q ≠ 0 for T < Tf. Much further detail can be found in 
Fischer and Hertz [7.22]. See also the article by Young [7.8 pp. 331-346]. 

Randomness and frustration (where two paths linking the same pair of spins do 
not have the same net effective sign of exchange coupling) are shared by many other 
systems besides spin glasses. Or another way of saying this is that the study of spin 
glasses fall in the broad category of the study of disordered systems, including ran-
dom field systems (like diluted antiferromagnets), glasses, neural networks, optimi-
zation and decision problems. Other related problems include combinatorial optimi-
zation problems, such as the traveling salesman problem, and other problems 
involving complexity. For the neural network problem see for example, Muller and 
Reinhardt [7.50]. The book by Fischer and Hertz, already mentioned has a chapter 
on the physics of complexity with references. Another reference to get started in 
this general area is Chowdhury [7.12]. Mean-field theories of spin glasses have 
been promising, but there is no general consensus as to how to model spin glasses. 

It is worth looking at a few experimental results to show real spin glass proper-
ties. Figure 7.34  shows the cusp in the susceptibility for CuMn. The true Tf occurs 
as the ac frequency goes to zero. Figure 7.35 shows the temperature dependence 
of the magnetization and order parameter for CuMn and AuFe. Figure 7.36 shows 
the magnetic specific heat for two CuMn samples. 
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Fig. 7.34. The ac susceptibility as a function of T for CuMn (1 at %). Measuring frequen-
cies: □, 1.33 kHz; o, 234 Hz, ■, 10.4 Hz; and Δ, 2.6 Hz. From Mydosh JA, “Spin-Glasses – 
The Experimental Situation” Magnetism in Solids Some Current Topics, Scottish Universi-
ties Summer School in Physics, 1981, p. 95, by permission of SUSSP. Data from Mulder 
CA, van Duyneveldt AJ, and Mydosh JA, Phys Rev, B23, 1384 (1981) 

 0.48 

0.43 

0.38 

0.33 

0.28 

0.23 

0.18 
0 10 20 30

CuMn

AuFe

M
(T

) 

0 10 20 30

CuMn
AuFe

Temperature (K)

0.5 

1.0 

Q
(T

) 

 
Fig. 7.35. The temperature variation of the magnetization M(T,H) and order parameter 
Q(T,H) with vanishing field (open symbols) and with 16 kG applied external magnetic field 
(full symbols) for Cu–0.7 at% Mn and Au–6.6 at% Fe; M(T,H=0) is zero. After Mookerjee 
A and Chowdhury D, J Physics F, Metal Physics 13, 365 (1983), by permission of the In-
stitute of Physics 
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Fig. 7.36. Magnetic specific heat for CuMn spinglasses. The arrows show the freezing 
temperature (susceptibility peak). Reprinted with permission from Wenger LE and Keesom 
PH, Phys Rev B 13, 4053 (1976). Copyright 1976 by the American Physical Society  

7.5.4  Solitons31 (A, EE) 

Solitary waves are large-amplitude, localized, stable propagating disturbances. If 
in addition they preserve their identity upon interaction they are called solitons. 
They are particle-like solutions of nonlinear partial differential equations. They 
were first written about by John Scott Russell, in 1834, who observed a peculiar 
stable shallow water wave in a canal. They have been the subject of much interest 
since the 1960s, partly because of the availability of numerical solutions to rele-
vant partial differential equations. Optical solitons in optical fibers are used to 
transmit bits of data. 

Solitons occur in hydrodynamics (water waves), electrodynamics (plasmas), 
communication (light pulses in optical fibers), and other areas. In magnetism the 
steady motion of a domain wall under the influence of a magnetic field is an ex-
ample of a soliton.32 

In one dimension, the Korteweg–de Vries equation 
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(with A and B being positive constants) is used to discuss water waves. In other 
areas, including magnetism and domain walls, the sine-Gordon equation is en-
countered 
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31 See Fetter and Walecka [7.20] and Steiner, “Linear and non linear modes in 1d mag-

nets,” in [7.14, p199ff]. 
32 See the article by Krumhansl in [7.8, pp. 3-21] who notes that static solutions are also 

solitons. 
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(with A, B, C, and u0 being positive constants). Generalization to higher dimension 
have been made. The solitary wave owes its stability to the competition of disper-
sion and nonlinear effects (such as a tendency to steepen waves). The solitary 
wave propagates with a velocity that depends on amplitude.  

Problems 

7.1 Calculate the demagnetization factor of a sphere. 

7.2 In the mean-field approximation in dimensionless units for spin 1/2 ferro-
magnets the magnetization (m) is given by 

 ⎟
⎠
⎞

⎜
⎝
⎛=

t
mm tanh , 

where t = T/Tc and Tc is the Curie temperature. Show that just below the Cu-
rie temperature t < 1, 

 tm −= 13 . 

7.3 Evaluate the angular momentum L and magnetic moment μ for a sphere of 
mass M (mass uniformly distributed through the volume) and charge Q (uni-
formly distributed over the surface), assuming a radius r and an angular veloc-
ity ω. Thereby, obtain the ratio of magnetic moment to angular momentum. 

7.4 Derive Curie’s law directly from a high-temperature expansion of the parti-
tion function. For paramagnets, Curie’s law is 

 
T
C=χ  (The magnetic susceptibility), 

where Curie’s constant is 

 
k

jjNgC B
3

)1(22
0 += μμ . 

N is the number of moments per unit volume, g is Lande’s g factor, μB is the 
Bohr magneton, and j is the angular momentum quantum number. 

7.5 Prove (7.155). 

7.6 Prove (7.156). 
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7.7 In one spatial dimension suppose one assumes the Heisenberg Hamiltonian 

 ,)J(,RRJRR RR 00)(
2
1

, =′−−= ∑ ′ ′SS ⋅H  

where R − R′ = ±a for nearest neighbor and J1 ≡ J(±a) > 0, J2 ≡ J(±2a) = 
− J1/2 with the rest of the couplings being zero. Show that the stable ground 
state is helical and find the turn angle. Assume classical spins. For simplic-
ity, assume the spins are confined to the (x,y)-plane. 

7.8 Show in an antiferromagnetic spin wave that the neighboring spins precess 
in the same direction and with the same angular velocity but have different 
amplitudes and phases. Assume a one-dimensional array of spins with near-
est-neighbor antiferromagnetic coupling and treat the spins classically. 

7.9 Show that (7.163) is a consistent transformation in the sense that it obeys a 
relation like (7.175), but for Sj

−. 

7.10 Show that (7.138) can be written as 
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7.11 Using the definitions (7.179), show that 
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7.12 (a) Apply Hund’s rules to find the ground state of Nd3+ (4f 35s2p6). 
(b) Calculate the Lande g-factor for this case. 

7.13 By use of Hund’s rules, show that the ground state of Ce3+ is 2F5/2, of Pm3+ is 
5I4, and of Eu3+ is 7F0. 

7.14 Explain what the phrases “3d1 configuration” and “2D term” mean. 

7.15 Give a rough order of magnitude estimate of the magnetic coupling energy 
of two magnetic ions in EuO (Tc ≅ 69 K). How large an external magnetic 
field would have to be applied so that the magnetic coupling energy of a sin-
gle ion to the external field would be comparable to the exchange coupling 
energy (the effective magnetic moment of the magnetic Eu2+ ions is 7.94 
Bohr magnetons)? 

7.16 Estimate the Curie temperature of EuO if the molecular field were caused by 
magnetic dipole interactions rather than by exchange interactions. 

7.17 Prove the Bohr–van Leeuwen theorem that shows the absence of magnetism 
with purely classical statistics. Hint – look at Chap. 4 of Van Vleck [7.63]. 

 



 

 

8  Superconductivity 

8.1  Introduction and Some Experiments (B) 

In 1911 H. Kamerlingh Onnes measured the electrical resistivity of mercury and 
found that it dropped to zero below 4.15 K. He could do this experiment because 
he was the first to liquefy helium and thus he could work with the low tempera-
tures required for superconductivity. It took 46 years before Bardeen, Cooper, and 
Schrieffer (BCS) presented a theory that correctly accounted for a large number of 
experiments on superconductors. Even today, the theory of superconductivity is 
rather intricate and so perhaps it is best to start with a qualitative discussion of the 
experimental properties of superconductors. 

Superconductors can be either of type I or type II, whose different properties 
we will discuss later, but simply put the two types respond differently to external 
magnetic fields. Type II materials are more resistant, in a sense, to a magnetic 
field that can cause destruction of the superconducting state. Type II superconduc-
tors are more important for applications in permanent magnets. We will introduce 
the Ginzburg–Landau theory to discuss the differences between type I and type II. 

The superconductive state is a macroscopic state. This has led to the develop-
ment of superconductive quantum interference devices that can be used to meas-
ure very weak magnetic fields. We will briefly discuss this after we have laid the 
foundation by a discussion of tunneling involving superconductors. 

We will then discuss the BCS theory and show how the electron–phonon inter-
action can give rise to an energy gap and a coherent motion of electrons without 
resistance at sufficiently low temperatures. 

Until 1986 the highest temperature that any material stayed superconducting 
was about 23 K. In 1986, the so-called high-temperature ceramic superconductors 
were found and by now, materials have been discovered with a transition tempera-
ture of about 140 K (and even higher under pressure). Even though these materials 
are not fully understood, they merit serious discussion. In 2001 MgB2, an inter-
metallic material was discovered to superconduct at about 40 K and it was found 
to have several unusual properties. We will also discuss briefly so-called heavy-
electron superconductors. 

Besides the existence of superconductivity, Onnes further discovered that a su-
perconducting state could be destroyed by placing the superconductor in a large 
enough magnetic field. He also noted that sending a large enough current through 
the superconductor would destroy the superconducting state. Silsbee later sug-
gested that these two phenomena were related. The disruption of the superconduc-
tive state is caused by the magnetic field produced by the current at the surface of 
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the wire. However, the critical current that destroys superconductivity is very 
structure sensitive (see below) so that it can be regarded for some purposes as an 
independent parameter. The critical magnetic field (that destroys superconductiv-
ity) and the critical temperature (at which the material becomes superconducting) 
are related in the sense that the highest transition temperature occurs when there is 
no external magnetic field with the transition temperature decreasing as the field 
increases. We will discuss this a little later when we talk about type I and type II 
superconductors. Figure 8.1 shows at low temperature the difference in behavior 
of a normal metal versus a superconductor. 

 
Fig. 8.1. Electrical resistivity in normal and superconducting metals (schematic) 
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Hc(T)

Superconducting

Normal

T
 

Fig. 8.2. Schematic of critical field vs. temperature for Type I superconductors 

In 1933, Meissner and Ochsenfeld made another fundamental discovery. They 
found that superconductors expelled magnetic flux when they were cooled below 
the transition temperature. This established that there was more to the supercon-
ducting state than perfect conductivity (which would require E = 0); it is also a state 
of perfect diamagnetism or B = 0. For a long, thin superconducting specimen, B = H 
+ 4πM (cgs). Inside B = 0, so H + 4πM = 0 and Hin = Ba (the externally applied B 
field) by the boundary conditions of H along the length being continuous. Thus, Ba 
+ 4πM = 0 or χ = M/Ba = −1/(4π), which is the case for a perfect diamagnet. Exclu-
sion of the flux is due to perfect diamagnetism caused by surface currents, which 
are always induced so as to shield the interior from external magnetic fields. A sim-
ple application of Faraday’s law for a perfect conductor would lead to a constant 
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flux rather than excluded flux. A plot of critical field versus temperature typically 
(for type I as we will discuss) looks like Fig. 8.2. The equation describing the criti-
cal fields dependence on temperature is often empirically found to obey 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

1)0()(
c

cc T
THTH . (8.1) 

In 1950, H. Fröhlich discussed the electron–phonon interaction and considered 
the possibility that this interaction might be responsible for the formation of the 
superconducting state. At about the same time, Maxwell and Reynolds, Serin, 
Wright, and Nesbitt found that the superconducting transition temperature de-
pended on the isotopic mass of the atoms of the superconductor. They found MαTc 
≅ constant. This experimental result gave strong support to the idea that the elec-
tron–phonon interaction was involved in the superconducting transition. In the 
simplest model, α = 1/2. 

In 1957, Bardeen, Cooper, and Schrieffer (BCS) finally developed a formalism 
that contained the correct explanation of the superconducting state in common su-
perconductors. Their ideas had some similarity to Fröhlich’s. A key idea of the 
BCS theory was developed by Cooper in 1956. Cooper analyzed the electron–
phonon interaction in a different way from Fröhlich. Fröhlich had discussed the 
effect of the lattice vibrations on the self-energy of the electrons. Cooper analyzed 
the effect of lattice vibrations on the effective interaction between electrons and 
showed that an attractive interaction between electrons (even a very weak attrac-
tive interaction at low enough temperature) would cause pairs of the electrons (the 
Cooper pairs) to form bound states near the Fermi energy (see Sect. 8.5.3). Later, 
we will discuss the BCS theory and show the pairing interaction causes a gap in 
the density of single-electron states. 
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Fig. 8.3. (a) Type I and (b) Type II superconductors 

As we have mentioned a distinction is made between type I and type II super-
conductors. Type I have only one critical field while type II have two critical fields. 
The idea is shown in Fig. 8.3a and b. 4πM is the magnetic field produced by the sur-
face superconducting currents induced when the external field is applied. Type I 
superconductors either have flux penetration (normal state) or flux exclusion  
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(superconductivity state). For type II superconductors, there is no flux penetration 
below Hc1, the lower critical field, and above the upper critical field Hc2 the material 
is normal. But, between Hc1 and Hc2 the superconductivity regions are threaded by 
vortex regions of the flux penetration. The idea is shown in Fig. 8.4. 

Type I and type II behavior will be discussed in more detail after we discuss 
the Ginzburg–Landau equations for superconductivity. We now mention some ex-
periments that support the theories of superconductivity. 

 
Fig. 8.4. Schematic of flux penetration for type II superconductors. The gray areas repre-
sent flux penetration surrounded by supercurrent (vortex). The net effect is that the super-
conducting regions in between have no flux penetration 
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Fig. 8.5. Absorption coefficients ultrasonic attenuation in Pb (αn refers to the normal state, 
αs refers to the superconducting state, and Tc is the transition temperature). The dashed 
curve is derived from BCS theory and it uses an energy gap of 4.2 kTc. [Reprinted with 
permission from Love RE and Shaw RW, Reviews of Modern Physics 36(1) part 1, 260 
(1964). Copyright 1964 by the American Physical Society.] 
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8.1.1  Ultrasonic Attenuation (B) 

The BCS theory of the ratio of the normal to the superconducting absorption coef-
ficients (αn to αs) as a function of temperature variation of the energy gap (dis-
cussed in detail later) can be interpreted in such a way as to give information on 
the temperature variation of the energy gap. Some experimental results on (αn/αs) 
versus temperature are shown in Fig. 8.5. Note the close agreement of experiment 
and theory, and that the absorption of superconductors is much lower than for the 
normal case when well below the transition temperature. 

8.1.2  Electron Tunneling (B) 

There are at least two types of tunneling experiments of interest. One involves 
tunneling from a superconductor to a superconductor with a thin insulator separat-
ing the two superconductors. Here, as will be discussed later, the Josephson ef-
fects are caused by the tunneling of pairs of electrons. The other type of tunneling 
(Giaever) involves tunneling of single quasielectrons from an ordinary metal to a 
superconducting metal. As will be discussed later, these measurements provide in-
formation on the temperature dependence of the energy gap (which is caused by 
the formation of Cooper pairs in the superconductor), as well as other features. 

8.1.3  Infrared Absorption (B) 

The measurement of transmission or reflection of infrared radiation through thin 
films of a superconductor provides direct results for the magnitude of the energy 
gap in superconductors. The superconductor absorbs a photon when the photon’s 
energy is large enough to raise an electron across the gap. 

8.1.4  Flux Quantization (B) 

We will discuss this phenomenon in a little more detail later. Flux quantization 
through superconducting rings of current provides evidence for the existence of 
paired electrons as predicted by Cooper. It is found that flux is quantized in units 
of h/2e, not h/e. 

8.1.5  Nuclear Spin Relaxation (B) 

In these experiments, the nuclear spin relaxation time T1 is measured as a function 
of temperatures. The time T1 depends on the exchange of energy between the nu-
clear spins and the conduction electrons via the hyperfine interaction. The data for 
T1 for aluminum looks somewhat as sketched in Fig. 8.6. The rapid change of T1 
near T = Tc can be explained, at least quantitatively, by BCS theory. 
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 T1 

T/Tc1  
Fig. 8.6. Schematic of nuclear spin relaxation time in a superconductor near Tc 

8.1.6  Thermal Conductivity (B) 

A sketch of thermal conductivity K versus temperature for a superconductor is 
shown in Fig. 8.7. Note that if a high enough magnetic field is turned on, the ma-
terial stays normal—even below Tc. So, a magnetic field can be used to control the 
thermal conductivity below Tc. 
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Fig. 8.7. Effect of magnetic field on thermal conductivity K 

All of the above experiments have tended to confirm the BCS ideas of the su-
perconducting state. A central topic that needs further elaboration is the criterion 
for occurrence of superconductivity in any material. We would like to know if the 
BCS interaction (electrons interacting by the virtual exchange of phonons) is the 
only interaction. Could there be, for example, superconductivity due to magnetic 
interactions? Over a thousand superconducting alloys and metals have been found, 
so superconductivity is not unusual. It is, perhaps, still an open question as to how 
common it is. 

In the chapter on metals, we have mentioned heavy-fermion materials. Super-
conductivity in these materials seems to involve a pairing mechanism. However, 
the most probable cause of the pairing is different from the conventional BCS the-
ory. Apparently, the nature of this “exotic” pairing has not been settled as of this 
writing, and reference needs to be made to the literature (see Sect. 8.7). 
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For many years, superconducting transition temperatures (well above 20 K) had 
never been observed. With the discovery of the new classes of high-temperature su-
perconductors, transition temperatures (well above 100 K) have now been ob-
served. We will discuss this later, also. The exact nature of the interaction mecha-
nism is not known for these high-temperature superconductors, either. 

8.2  The London and Ginzburg–Landau Equations (B) 

We start with a derivation of the Ginzburg–Landau (GL) equations, from which 
several results will follow, including the London equations. Originally, these 
equations were proposed on intuitive, phenomenological lines. Later, it was real-
ized they could be derived from the BCS theory. Gor’kov showed the GL theory 
was a valid description of the BCS theory near Tc. He also showed that the wave 
function ψ of the GL theory was proportional to the energy gap. Also, the density 
of superconducting electrons is |ψ|2. Due to spatial inhomogeneities ψ = ψ(r), 
where ψ(r) is also called the order parameter. This whole theory was developed 
further by Abrikosov and is often known as the Ginzburg, Landau, Abrikosov, and 
Gor’kov theory (for further details, see, e.g., Kuper [8.20] 

Near the transition temperature, the free energy density in the phenomenologi-
cal GL theory is assumed to be (gaussian units) 
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where N and S refer to normal and superconducting phases. The coefficients α and 
β are phenomenological coefficients to be discussed. h2/8π is the magnetic energy 
density (h = h(r) is local and the magnetic induction B is determined by the spatial 
average of h(r), so A is the vector potential for h, h = ∇ × A). m* = 2m (for pairs 
of electrons), q = 2e is the charge and is negative for electrons, and ψ is the com-
plex superconductivity wave function. Requiring (in the usual calculus of varia-
tions procedure) δFS/δψ* to be zero (δFS/δψ = 0 would yield the complex conju-
gate of (8.3)), we obtain the first Ginzburg–Landau equation 
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FS can be regarded as a functional of ψ and A, so requiring δFS/δA = 0 we obtain 
the second GL equation for the current density: 
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where ψ = |ψ|eiφ. Note (8.3) is similar to the Schrödinger wave equation (except for 
the term involving β) and (8.4) is like the usual expression for the current density. 
Writing nS = |ψ|2 and neglecting, as we have, any spatial variation in |ψ|, we find 
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where λL is the London penetration depth. Equation (8.5) is London’s equation. 
Note this is the same for a single electron (where m* = m, q = e, nS = ordinary den-
sity) or a Cooper pair (m* = 2m, q = 2e, nS → n/2). 

Let us show why λL is called the London penetration depth. At low frequencies, 
we can neglect the displacement current in Maxwell’s equations and write 
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Combining with (8.5) that we assume to be approximately true, we have 
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or using ∇⋅B = 0, we have 
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For a geometry with a normal material for x < 0 and a superconductor for x > 0, if 
the magnetic field at x = 0 is B0, the solution of (8.9) is 
 )/exp()( L0 λxx −= BB . (8.10) 

Clearly, λL is a penetration depth. Thus, if we have a very thin superconducting 
film (with thickness << λL), we really do not have a Meissner effect (flux exclu-
sion). Magnetic flux will penetrate the surface of a superconductor over a distance 
approximately equal to the London penetration depth λL ≅ 100 to 1000 Å. Actu-
ally, λL is temperature dependent and can be well described by 
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where 
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8.2.1  The Coherence Length (B) 

Consider the Ginzburg–Landau equation in the absence of magnetic fields 
(A = 0). Then, in one dimension from (8.3), we have 
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We define 
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When f has no gradients | f | = 1, which would correspond to being well inside the 
superconductor. We assume a boundary at x = 0 between a normal and a super-
conductor so f = 1, ψ → ψ0 as x → ∞. 

Defining 
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and letting f = 1 + g, where g is small, then 
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Keeping only first order in g since it is small, 
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Thus, the wave function attains its characteristic value of ψ0 in a distance ξ(T). 
ξ(T) is called the coherence length. The coherence length measures the “range” or 
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“size” of Cooper pairs or the distance necessary for the superconducting wave 
function to change much. 

Let us discuss the coherence length further. First, let us review a little about the 
free energy. The plots for FS − FN are shown in Fig. 8.8. The superconducting 
transition clearly appears at T = Tc or α = 0. The free energy for no fields or gradi-
ents is 
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at the minimum. Thus at the minimum 
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which would also be the stabilization energy. From thermodynamics, if F = 
U − TS, and dU = TdS − MdH, then dF = −MdH at constant T. For perfect dia-
magnetism, 
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Fig. 8.8. Free energy change at the transition temperature. See (8.20) for how α enters the 
free energy with no fields or gradients 
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So, 
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At H = Hc, the critical field that destroys superconductivity, 
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FN is almost independent of H so, 
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We show the idea schematically in Fig. 8.9. Therefore, 
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would also be the negative of the stabilization energy, or using (8.23) 
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Notice deep in the superconductor 
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Fig. 8.9. Free energy as a function of field 
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So, 
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by (8.32) and thus by (8.33) and (8.31) 
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Combining (8.16) and (8.35), an expression for the coherence length can be de-
rived. 

We wish to estimate the upper critical field. In Chap. 2 on electrons, we found 
the allowed energy levels in a constant B field were (in an approximation) free-
electron-like parallel to the field and harmonic-oscillator-like in a plane perpen-
dicular to the field. The harmonic energy levels were (dropping * on m) 
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for the (linearized) Ginzburg–Landau equation (with –α acting as the eigenvalue 
in (8.3)). The largest value of B for which solutions of the GL equation exists is 
(n = 0 and letting kz = 0) 
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The two lengths λ and ξ can be defined as a dimensionless ratio K (the GL pa-
rameter). Hc2 can now be described in terms of K and Hc. Using (8.6), (8.16), 
(8.32), (8.30) and 
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we find 

 cc2 2KHH = . (8.39) 

If K = λ/ξ > 2−1/2, then Hc2 > Hc. This results in a type II superconductor. The re-
gime of K > 2−1/2 is a regime of negative surface energy. 
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8.2.2  Flux Quantization and Fluxoids (B) 

We have for the superconducting current density (by (8.4) with |ψ|2 as spatially 
constant = n) 
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Well inside a superconductor J = 0, so 
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Applying this to Fig. 8.10 and integrating around the loop gives 
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This also applies to Fig. 8.11, so 
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In the vortex state of the type II superconductors, the minimum current produces 
the flux Φ0. In the intermediate state there can be flux tubes threading through the 
superconductors as shown in Fig. 8.4 and Fig. 8.11. Below, in Fig. 8.12, is a 
sketch of the penetration depth and coherence length in a superconductor starting 
with a region of flux penetration. Note λ/ξ < 1 for type I superconductors. 
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Fig. 8.10. Super current in a ring 
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Fig. 8.11. Flux tubes in type II superconductors 

 λ H 

H 

ξ 

ψ = ψ∞ = ψ0 

Superconductor 

 
Fig. 8.12. Decay of H and asymptotic value of superconducting wave function 

8.2.3  Order of Magnitude for Coherence Length (B) 

For type II superconductors, there is a lower critical field Hc1 for which the flux 
just begins to penetrate, so 

 0
2

c1 ~ ΦπλH  (8.46) 

for a single fluxoid. At the upper critical field, 
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so that, by (8.44) with m = 1, 
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for fluxoids packed as closely as possible. ξ0 is the intrinsic coherence length, to 
be distinguished from the actual coherence length when the superconductor is 
“dirty” or possessed of appreciable impurities. A better estimate, based on funda-
mental parameters is1 
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1 See Kuper [8.20 p221]. 
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where vF is the velocity of the Fermi surface and Eg is the energy gap. The coher-
ence length changes in the presence of scattering. If the electron mean free path is 
l we have 

 0ξξ = , (8.50) 

as given by (8.49) for clean superconductors when ξ0 < l and 

 0ξξ l≅ , (8.51) 
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Fig. 8.13. Type I and type II superconductors depending on mfp 

for dirty superconductors when l << ξ0.(2) That is, dirty superconductors have de-
creased ξ and increased K = λ/ξ. The penetration depth can also depend on struc-
ture. The idea is schematically shown in Fig. 8.13 where typically the more im-
pure the superconductor the lower the mean free path (mfp) leading to type II 
behavior. 

8.3  Tunneling (B, EE) 

8.3.1  Single-Particle or Giaever Tunneling 

We anticipate some results of the BCS theory, which we will discuss later. As we 
will show, when electrons are well separated the electron–lattice interaction can 
lead to an effective attractive interaction between the electrons. An effective at-
tractive interaction between electrons can cause there to be an energy gap in the 
single-particle density of states, as we also show later. This energy gap separates 
the ground state from the excited states and is responsible for most of the unique 
properties of superconductors. 

                                                           
2 See Saint-James et al [8.27 p. 141] 
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Fig. 8.14. Diagram of energy gap in a superconductor. D(E) is the density of states 

Suppose we form a structure as given in Fig. 8.14. Let T be a tunneling matrix 
element. For the tunneling current we can write (with an applied voltage V)3 
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4 In the above, K′ is a constant, Di represents density of states, and f is the Fermi 
function. If we raise the voltage V by eV = Δ, we get the following (see Fig. 8.15) 
for the net current, and thus, the energy gap can be determined. 

                                                           
3 Note this is actually an oversimplified semiconductor-like picture of a complicated 

many-body effect [8.14 p. 247], but the picture works well for certain aspects and cer-
tainly is the simplest way to get a feel for the experiment. 

4 For the superconducting density of states see Problem 8.2. 
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Fig. 8.15. Schematic of Giaever (single-particle) tunneling 

8.3.2  Josephson Junction Tunneling 

Josephson [8.18] predicted that when two superconductors were separated by an 
insulator there could be tunneling of Cooper pairs from one to the other provided 
the insulator was thinner than the coherence length, see Fig. 8.16. 

The main concept used to discuss the Josephson effects is that of the phase of 
the paired electrons. We have already considered this idea in our discussion of 
flux quantization. F. London had the idea of something like a phase associated 
with superconducting electrons in that he believed that the motions of electrons in 
superconductors are correlated over large distances. We now associate the idea of 
spatial correlation of electrons with the idea of the existence of Cooper pairs. 
Cooper pairs are sets of two electrons that are attracted to one another (in spite of 
their Coulomb repulsion) because an electron attracts positive ions. As alluded to 
earlier, the positive ions in a crystal are much more massive and have, in general, 
less freedom of movement than the conduction electrons. This means that when an 
electron has attracted a positive ion to a displaced position, we can imagine the 
electron as moving out of the area while the positive ion remains displaced for a 
time. In the region of the crystal where the positive ion(s) is (are) displaced, the 
crystal has a more positive charge than usual and so this region can attract another 
electron. We could generalize this argument to consider that the displaced positive 
ion would be undergoing some sort of motion but still an electron with suitable 
phase could be attracted to the region of the displaced positive ion. Anyway, the 
argument seems to make it plausible that there can be an effective attractive inter-
action between electrons due to the presence of the positive ion lattice. The rather 
qualitative picture that we have given seems to be the physical content of the 
statement “Cooper pairs of electrons are formed because of the virtual exchange 

 
Superconductor Oxide Superconductor 

 
Fig. 8.16. Schematic of Josephson junction 
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of phonons between the electrons.” We also see that only lattices in which the 
electron–lattice vibration coupling is strong will be good superconductors. Thus, 
we are led to an understanding of the almost paradoxical fact that good conductors 
of electricity (with low resistance and hence low electron–phonon coupling) often 
make poor superconductors. We give details including the role of spin later. 

Due to the nature of the attractive mechanism between electrons in a Cooper 
pair, we should not be surprised that the binding of the electrons is very weak. 
This means that we have to think of the Cooper pairs as being very large (of the 
order of many, many lattice spacings) and hence the Cooper pairs overlap with 
each other a great deal in the solid. As we will see, further analysis of the pairs 
shows that the electrons in pairs have equal and opposite momentum (in the 
ground state) and equal and opposite spin. However, the Cooper pairs can accept 
momentum in such a way that they are still “stable” systems, but so that their cen-
ter of mass moves. When this happens, the motion of the pairs is influenced by the 
fact that they are so large many of them must overlap. The Cooper pairs are com-
posed of electrons, and the way electronic wave functions can overlap is limited 
by the Pauli principle. We now know that overlapping together with the constraint 
of the Pauli principle causes all Cooper pairs to have the same phase and the same 
momentum (i.e. the momentum of the center of mass of the Cooper pairs). The 
pairs are like bosons, in a sense, and condense into a lowest quantum state produc-
ing a wave function with phase. 

Returning to the coupling of superconductors through an oxide layer, we write 
a sort of time-dependent “Ginzburg–Landau equations,” that allow for coupling,5 

 211
1i ψψ

∂
∂ψ UH

t
== += , (8.56) 

 122
2i ψψ

∂
∂ψ UH

t
== += . (8.57) 

If no voltage or magnetic field is applied, we can assume H1 = H2 = 0. Then 

 2
1i ψ

∂
∂ψ U

t
== = , (8.58) 

 1
2i ψ

∂
∂ψ U

t
== = . (8.59) 

                                                           
5 See, e.g., Feynman et al [8.13], and Josephson [8.18], this was Josephson’s Nobel Prize 

address. See also Dalven [8.11] and Kittel [23 Chap. 12]. 
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We seek solutions of the form (any complex function can always be written as a 
product of amplitude ρ and eiφ where φ is the phase) 

 )iexp( 111 ϕρψ = , (8.60) 

 )iexp( 222 ϕρψ = . (8.61) 

So, using (8.58) and (8.59) we get 

 )iΔexp(i 2111 ϕρϕρρ U=− �� , (8.62) 

 )iΔexp(i 1222 ϕρϕρρ −=− U�� , (8.63) 

where 

 )(Δ 12 ϕϕϕ −=  (8.64) 

is the phase difference between the electrons on the two sides. Separating real and 
imaginary parts, 

 ϕρρ Δsin21 U=� , (8.65) 

 ϕρϕρ Δcos211 U−=� , (8.66) 

 ϕρρ Δsin12 U−=� , (8.67) 

 ϕρϕρ Δcos122 U−=� . (8.68) 

Assume ρ1 ≅ ρ2 ≅ ρ for identical superconductors, then 

 0)(
d
d

12 =− ϕϕ
t

, (8.69) 

 constant12 ≅−ϕϕ , (8.70) 

 21 ρρ �� −≅ . (8.71) 

The current density J can be written as 

 22
2
2 2

d
d ρρρ �=∝
t

J , (8.72) 

so 

 )sin( 120 ϕϕ −= JJ . (8.73) 

This predicts a dc current with no applied voltage. This is the dc Josephson effect. 
Another more rigorous derivation of (8.73) is given in Kuper [8.20 p 141]. J0 is 
the critical current density or the maximum J that can be carried by Cooper pairs. 
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The ac Josephson effect occurs if we apply a voltage difference V across the 
junction, so that =qV with q = 2e is the energy change across the junction. The 
relevant equations become 

 12
1i ψψ∂ψ === eVU

t
−=

∂
, (8.74) 

 21
2i ψψ

∂
∂ψ === eVU

t
+= . (8.75) 

Again, 
 12111 )iΔexp(i ρϕρϕρρ eVU −=− �� , (8.76) 

 21222 )iΔexp(i ρϕρϕρρ eVU +−=− �� . (8.77) 

So, separating real and imaginary parts 
 ϕρρ Δsin21 U=�  (8.78) 

 ϕρρ Δsin12 U−=�  (8.79) 

 21 ρρ �� −≅  (8.80) 

 eVU +−= ϕρϕρ Δcos211 �  (8.81) 

 eVU −−= ϕρϕρ Δcos122 � . (8.82) 

Remembering ρ1 ≅ ρ2 ≅ ρ, so 
 eV212 −≅−ϕϕ �� . (8.83) 

Therefore 
 eVt2)Δ(Δ 0 −≅ ϕϕ , (8.84) 

and 
 ]2)Δsin[( 00 eVtJJ −= ϕ . (8.85) 

Again, J0 is the maximum current carried by Cooper pairs. Additional current is 
carried by single-particle excitations producing the voltage V. The idea is shown 
later in Fig. 8.18. Therefore, since V is voltage in units of =, the current oscillates 
with frequency (see (8.85)) 

 Voltage2 2J eV eω = =
=

. (8.86) 

For the dc Josephson effect one can say that for low enough currents there is a 
current across the insulator in the absence of applied voltage. In effect because of 
the coherence of Cooper pairs, the insulator becomes a superconductor. Above a 
critical voltage, Vc, one has single electrons and the material becomes ohmic 
rather than superconducting. The junction then has resistance, but the current also 
has a component that oscillates with frequency ωJ as above. One understands this 
by saying that above Vc one has single particles as well as Cooper pairs. The 
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Cooper pairs change their energy by 2eV = =ωJ as they cross the energy gap caus-
ing radiation at this frequency. The ac Josephson effect, which occurs when 

 Voltageqω =
=

 (8.87) 

is satisfied, is even more interesting. With q = 2e (for a Cooper pair), (8.87) is be-
lieved to be exact. Thus, the ac Josephson effect can be used for a precise deter-
mination of e/=. Parker, Taylor, and Langenberg6 have done this. They used their 
new value of e/= to determine a new and better value of the fine structure constant 
α. Their new value of α removed a discrepancy between the quantum-
electrodynamics calculation and the experimental value of the hyperfine splitting 
of atomic hydrogen in the ground state. These experiments have also contributed 
to better accuracy in the determination of the fundamental constants. There have 
been many other important developments connected with the Josephson effects, 
but they will not be presented here. Reference [8.20] is a good source for further 
discussion. See also Fig. 8.18 for a summary. 

Finally, it is worth pointing out another reason why the Josephson effects are so 
interesting. They represent a quantum effect operating on a macroscopic scale. We 
can play with words a little, and perhaps convince ourselves that we understand 
this statement. In order to see quantum effects on a macroscopic scale, we must 
have many particles in the same state. For example, photons are bosons, and so, 
we can obtain a large number of them in the same state (which is necessary to see 
the quantum effects of electrons on a large scale). Electrons are fermions and must 
obey the Pauli principle. It would appear, then, to be impossible to see the quan-
tum effects of electrons on a macroscopic scale. However, in a certain sense, the 
Cooper pairs having total spin zero, do act like bosons (but not entirely; the Coo-
per pairs overlap so much that their motion is highly correlated, and this causes 
their motion to be different from bosons interacting by a two-boson potential). 
Hence, we can obtain many electrons in the same state, and we can see the quan-
tum effects of superconductivity on a macroscopic scale. 

8.4  SQUID: Superconducting Quantum Interference (EE) 

A Josephson junction is shown in Fig. 8.17 below. It is basically a superconduc-
tor–insulator–superconductor or a superconducting “sandwich”. We now show 
how flux, due to B, threading the circuit can have profound effects. Using (8.4) 
with φ the Ginzburg–Landau phase, we have 

 ⎥⎦
⎤

⎢⎣
⎡ −∇= AJ

c
q

m
nq ϕ= . (8.88) 

                                                           
6 See [8.24]. 
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Integrating along the upper path gives 

 ∫∫ ⋅+⋅= β
α

β
αϕ 111 ddΔ lAlJ

c
q

nq
m= , (8.89) 

while integrating along the lower path gives 

 ∫∫ ⋅+⋅= β
α

β
αϕ 222 ddΔ lAlJ

c
q

nq
m= . (8.90) 

Subtracting, we have 

 ∫∫ ⋅+⋅=− lAlJ dd)ΔΔ( 21 c
q

nq
mϕϕ= , (8.91) 
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Fig. 8.17. A Josephson junction 

 
Fig. 8.18. Schematic of current density across junction versus V. The Josephson current 
0 < J < J0 occurs with no voltage. When J > J0 at Vc ≅ Eg/e, where Eg is the energy gap, one 
also has single-particle current 
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where the first term on the right is zero or negligible. So, using Stokes Theorem 
and B = ∇ × A (and choosing a path where J ≅ 0) 

  ddΔΔ 21 c
qA

c
q

c
q

===
Φϕϕ =⋅=⋅=− ∫∫ BlA . (8.92) 

Defining Φ0 = =c/q as per (8.45), we have 

 
0

21 ΔΔ
Φ
Φϕϕ =− , (8.93) 

so when Φ = 0, and Δφ1 = Δφ2. We assume the junctions are identical so defining 
φ0 = (Δφ1 + Δφ2)/2, then 

 
0

01 2
Δ

Φ
Φϕϕ += , (8.94) 

 
0

02 2
Δ

Φ
Φϕϕ −=  (8.95) 

is a solution. By (8.73) 
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21021
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JJJJT
 (8.96) 

So 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
00 2

cos)sin(2
Φ
ΦϕJJT , (8.97) 

and 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
0max 2

cos2
Φ
ΦJJT . (8.98) 

The maximum occurs when Φ = 2nπΦ0. Thus, quantum interference can be used 
to measure small magnetic field changes. The maximum current is a periodic 
function of Φ and, hence, measures changes in the field. Sensitive magnetometers 
have been constructed in this way. See the original paper about SQUIDS by Silver 
and Zimmerman [8.31]. 

8.4.1  Questions and Answers (B) 

Q1. What is the simplest way to understand the dc Josephson effect (a current 
with no voltage in a super–insulator–super sandwich or SIS)? 
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A. If the insulator is much thinner than the coherence length, the superconducting 
pairs of electrons tunnel right through, and the insulator does not interfere with 
them–it is just one superconductor. 

Q2. What is the simplest way to understand the ac Josephson effect (a current with 
a component of frequency 2eV/=, where V is the applied voltage)? 

A. The Cooper pairs have charge q = 2e, and when they tunnel across the insula-
tor, they drop in energy by qV. Thus they radiate with frequency qV/=. This radia-
tion is linked to the ac current. 

8.5  The Theory of Superconductivity 7 (A) 

8.5.1  Assumed Second Quantized Hamiltonian for Electrons and 
Phonons in Interaction (A) 

As has already been mentioned, in many materials the superconducting state can 
be accounted for by an attractive electron–electron interaction due to the virtual 
exchange of phonons. See, e.g., Fig. 8.19. Thus, if we are going to try to under-
stand the theory of superconductivity from a microscopic viewpoint, then we must 
examine, in detail, the nature of the electron–phonon interaction. There is no com-
pletely rigorous road to the BCS Hamiltonian. The arguments given below are in-
tended to show how the physical origins of the BCS Hamiltonian could arise. It is 
not claimed that this is the way it must arise. However, given the BCS Hamilto-
nian, it is fair to say that the way it describes superconductivity is well understood. 

One could draw an analogy to the Heisenberg Hamiltonian. The road to this 
Hamiltonian is also not rigorous for real materials, but there seems to be no doubt 
that it well describes magnetic phenomena in at least certain materials. The phe-
nomena of superconductivity and ferromagnetism are exact, but the road to a 
quantitative description is not. 

We thus start out with the Hamiltonian, which represents the interaction of 
electrons and phonons. As before, an intuitive approach suggests 

 ∑ =⋅=
bl

xlb rx lb
,

0ep )]([ xiU∇H . (8.99) 

We have already discussed this Hamiltonian in Chap. 4, which the reader should 
refer to, if needed. By the theory of lattice vibrations, we also know that (see 
Chaps. 2 and 4) 

 ∑ −−⋅−−=
p

ppp
p

aae
Nm

x
,

,
†
,

*
,,

,
, )]()i[exp(

2q
qqbq

qb
bl lq

ω
= . (8.100) 

                                                           
7 See Bardeen et al [8.6]. 
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In the above equation, the a are, of course, phonon creation and annihilation op-
erators.  

By a second quantization representation of the terms involving electron coordi-
nates (see Appendix G), we can write 

 ∑
′

′′=
kk

kkkx
bl

blx
r

,

†

,
)()(

, CCrUU
ik

i ψψ
∂

∂ ∇ , (8.101) 

where the C are electron creation and annihilation operators. The only quantities 
that we will want to calculate involve matrix elements of the operator Hep. As we 
have already shown, these matrix elements will vanish unless the selection rule 
q = k′ − k − Gn is obeyed. Neglecting umklapp processes (assuming Gn = 0 the 
first major approximation), we can write 
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 (8.102) 

or 
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 (8.103) 

Making the dummy variable changes k′ → k, q → −q, and dropping the sum over 
p (assuming, for example, that only longitudinal acoustic phonons are effective in 
the interaction—this is the second major approximation), we find 

 ∑ −+ −=
qk

qqkqkq
,

††
ep )(i aaCCBH  (8.104) 

where 

 ∑ −+⋅=
bl

kxbqqk
qb

q rlq bl
,

*
, )()iexp(

2 , ψψ
ω iUe

Nm
B ∇= . (8.105) 

The only property of Bq that we will use from the above equation is Bq = B−q
*. 

From any reasonable, practical viewpoint, it would be impossible to evaluate the 
above equation directly and obtain Bq. Thus, Bq will be treated as a parameter to 
be evaluated from experiment. Note that so far we have not made any approxima-
tions that are specifically restricted to superconductivity. The same Hamiltonian 
could be used in certain electrical-resistivity calculations. 
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We can now write the total Hamiltonian for interacting electrons and phonons 
(with = = 1, and neglecting the zero-point energy of the lattice vibrations): 

    )(i ††

,

††
ep0 qqkqk

kq
qkk

k
kq

q
qq −+ −++=+= ∑∑∑ aaCCBCCaa εωHHH , (8.106) 

where the first two terms are the unperturbed Hamiltonian H0. 
The first term is the Hamiltonian for phonons only (with nq = a†

qaq as the pho-
non occupation number operator). The second term is the Hamiltonian for elec-
trons only (with nk = C†

kCk as the electron occupation number operator). The third 
term represents the interaction of phonons and electrons. We have in mind that the 
second term really deals with quasielectrons. We can assign an effective mass to 
the quasielectrons in such a manner as partially to take into account the electron–
electron interactions, electron interactions with the lattice, and at least partially 
any other interactions that may be important but only lead to a “renormalization” 
of the electron mass. Compare Sects. 3.1.4, 3.2.2, and 4.3, as well as the introduc-
tion in Chap. 4. We should also include a screened Coulomb repulsion between 
electrons (see Sect. 9.5.3), but we neglect this here (or better, absorb it in Vk,k′—to 
be defined later). 

Various experiments and calculations indicate that the energy per atom be-
tween the normal and superconducting states is of order 10−7 eV. This energy is 
very small compared to the accuracy with which we can hope to calculate the ab-
solute energy. Thus, a frontal attack is doomed to failure. So, we will concentrate 
on those terms leading to the energy difference. The rest of the terms can then be 
pushed aside. The results are nonrigorous, and their main justification is the 
agreement we get with experiment. The method for separating the important terms 
is by no means obvious. It took many years to find. All that will be done here is to 
present a technique for doing the separation.  

The technique for separating out the important terms involves making a ca-
nonical transformation to eliminate off-diagonal terms of O(Bq) in the Hamilto-
nian. Before doing this, however, it is convenient to prove several useful results. 
First, we derive an expansion for 

 )e)()(e( SS
S HH −≡ , (8.107) 

where S is an operator. 
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but 
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so that 

 …+++= ]],,[[
2
1],[ SSSS HHHH . (8.110) 

We can treat the next few terms in a similar way. 
The second useful result is obtained by H = H0 + XHep where X is eventually 

going to be set to one. In addition, we choose S so that  

 0],[ 0ep =+ SHHΧ . (8.111) 

We show that in this case HS has no terms of O(X). The result is proved by using 
(8.110) and substituting H = H0 + XHep. Then 
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 (8.112) 

Using (8.111), we obtain 

 …++++= ]],,[[
2
1]],,[[

2
],[ 0epep0 SSSSXSXS HHHHH  . (8.113) 

Since 

 0],[ 0ep =+ SHHΧ , (8.114) 

we have 

 ]],,[[],[ 0ep SSS HH −=Χ , (8.115) 

so that 

 ],[
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]],,[[
2

],[ epepep0 SSSSS HHHHH
ΧΧΧ −++= , (8.116) 

or 

 )(O],[
2

3
0 XSX

epS ++= HHH . (8.117) 

Since O(S) = X the second term is of order X2, which was to be proved. 
The point of this transformation is to push aside terms responsible for ordinary 

electrical resistivity (third major transformation). In the original Hamiltonian, 
terms in X contribute to ordinary electrical resistivity in first order. 
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From XHep + [H0,S] = 0, we can calculate S. This is especially easy if we use a 
representation in which H0 is diagonal. In such a representation 

 000ep =−+ mSSnmXn HHH , (8.118) 

or 

 0)(ep =−+ mSnEEmXn mnH , (8.119) 

or 

 
nm EE
mXn

mSn
−

= epH
. (8.120) 

The above equation determines the matrix elements of S and, hence, defines the 
operator S (for Em ≠ En). 

8.5.2  Elimination of Phonon Variables and Separation of Electron–
Electron Attraction Term Due to Virtual Exchange of Phonons 
(A) 

Let us now connect the results we have just derived with the problem of super-
conductivity. Let XHep be the interaction Hamiltonian for the electron–phonon 
system. Any operator that we present for S that satisfies 

 
nm EE
mn

mSn
−

= epHΧ
 (8.121) 

is good enough. In the above equation, |m〉 means both electron and phonon states. 
However, let us take matrix elements with respect to phonon states only and select 
S so that if we were to take electronic matrix elements, the above equation would 
be satisfied. This procedure is done because the behavior of phonons, except inso-
far as it affects the electrons, is of no interest. The point of this Section is then to 
find an effective Hamiltonian for the electrons. 

We begin with these ideas. Taking phonon matrix elements, we have 
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where ωq is the energy of the created phonon (with = = 1 and ωq = ω−q′). Using 

 11 † +=+ qqqq nnan , (8.123) 

we find 
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In a similar way we can show 

 ∑
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Now, using 
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with 
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(X has now been set equal to 1), and taking phonon expectation values for a par-
ticular phonon state, we have 

 

[ ]
[

].)()(                         

)()(
2
1
2
1

,1ep1,,1ep1,

,11,ep,11,ep0

epep0

nnnnnnnn

nnnnnnnn

m
S

SS

SSmn

nmmSnnSmmnnnnn

++−−

++−−

−−

++=

−+= ∑

HH

HHH

HHHH

(8.128) 

Since we are interested only in electronic coordinates, we will write below 
〈nq|HS|nq〉 as HS, and 〈nq|H0|nq〉 as H0, and hope that no confusion in notation will 
arise. Using 
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and 
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the effective Hamiltonian for electrons is given by combining the above. Thus, 
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Making dummy variable changes, dropping terms that do not involve the inter-
action of electrons (i.e. that do not involve both k and k′), and using the commuta-
tion relations for the C, it is possible to write the above in the form 
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 (8.132) 

In order to properly interpret Hamiltonians such as the above equation, which are 
expressed in the second quantization notation, it is necessary to keep in mind the 
appropriate commutation relations of the C. By Appendix G, these are 

 k
kkkkk

′
′′ =+ δCCCC †† , (8.133) 

 0†††† =+ ′′ kkkk CCCC , (8.134) 

and 

 0=+ ′′ kkkk CCCC . (8.135) 

The Hamiltonian (8.132) describes a process called a virtual exchange of a pho-
non. It has the diagrammatic representation shown in Fig. 8.19. 

 k – q 

k 
q

k′ + q

k′  
Fig. 8.19. The virtual exchange of a phonon of wave vector q. The k are the wave vectors 
of the electrons. This is the fundamental process of superconductivity 



8.5 The Theory of Superconductivity   (A)      489 

 

Note that (8.132) is independent of the number of phonons in mode q, and it is 
the effective electron Hamiltonian with phonons in the single mode q. To get the 
effective Hamiltonian with phonons in all modes, we merely have to sum over the 
modes of q. Thus, the total effective interaction Hamiltonian is given by 
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,
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′
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ωεεωεε

CCCCBH

 (8.136) 

By dropping further terms that do not involve the interaction of electrons (terms 
not involving both k and k′) and by making variable changes, we can reduce this 
Hamiltonian to 

 ∑ ∑
′

′−+′
− −−

=
q kk

kkqkqk
qqkk

q
q

,

††
22

2
I

)(
CCCCB

ωεε

ω
H . (8.137) 

From the above equation, we see that there is an attractive electron–electron in-
teraction for |εk − εk−q| < |ωq|. We will assume, for appropriate excitation energies, 
that the main interaction is attractive. In this connection, most of the electron en-
ergies of interest are near the Fermi energy εF. A typical phonon energy is the De-
bye energy =ωD (or cutoff frequency with = = 1). Many approximations have al-
ready been made, and so a very simple criterion for the dominance of the 
attractive interaction will be assumed. It will be assumed that the interaction is at-
tractive when the electronic energies are in the range of 
 )here 1( ≠+<<− === DFkDF ωεεωε . (8.138) 

The states that do not satisfy this criterion are not directly involved in the super-
conducting transition, so their properties are of no particular interest. Hence, the 
effective Hamiltonian can be written in the following form (fourth major ap-
proximation): 

 ∑ ∑
′

′−+′−≡
q kk

kkqkqkq
,

††
I CCCCVH . (8.139) 

For simplicity, we will assume that Vq is positive and fitted from experiment, that 
Vq = V−q and Vq = 0, unless q is such that (8.138) is satisfied. We assume that any 
important interactions not included in the above equation can be included by re-
normalizing (i.e. changing) the quasiparticle mass. 

8.5.3  Cooper Pairs and the BCS Hamiltonian (A) 

Let us assume that εk = 0 at the Fermi level. The total effective Hamiltonian for 
the electrons is then 

 ∑ ∑
′

′−+′−=
k qkk

kkqkqkqkkk
,,

††† CCCCVCCεH . (8.140) 
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By Appendix G, the Fermion operators satisfy 

 ………… )1()( 11 jj
P

jj nnnnnC j −−= , (8.141) 

 ………… )1()1()( 11
†

jj
P

jj nnnnnC j +−−= , (8.142) 

where 

 ∑
−

=
=

1

1

j

P
Pj nP . (8.143) 

It is essential to notice the alternation in sign defined by (8.142). This alternation 
is very important for discovering the nature of the lowest-energy state. When we 
begin to guess a trial wave function, if we pay no attention to this alternation of 
sign, the presence of the interaction will result in little lowering of the energy. 
What we need is a way of selecting the trial wave function so that most of the ma-
trix elements of individual terms in the second sum in (8.138) are negative. The 
way to do this for the ground state is by grouping the electrons into Cooper pairs. 
(These will be precisely defined below.) 

There are several assumptions necessary to construct a minimum energy wave 
function [60, p. 155ff]. For the ground-state wave function, it will be assumed that 
the Bloch states are occupied only in pairs. In fact, the superconducting ground 
state is a coherent superposition of Cooper pairs. The Hamiltonian conserves the 
wave vector, and only pairs with equal total momentum will be considered, i.e., 

 Kkk =′+ , (8.144) 

where K is the same for each pair. It is reasonable to suppose that K is zero for the 
ground (noncurrent carrying) state of the pairs. 

Cooper Pairs8 

Before proceeding, let us discuss Cooper pairs a little more. A large clue as to the 
nature of the unusual character of the superconducting state was obtained by L. 
Cooper in 1956. He showed that the Fermi sea was unstable if electrons interacted 
by an attractive mechanism—no matter how weak. 

Consider the normal Fermi sea of electrons with a well-defined Fermi energy 
EF. Now add two more electrons interacting with an attractive interaction V(1, 2) 
and suppose the only interaction with the other electrons is via the Pauli principle. 

We write the Schrödinger wave equation for the two electrons as 

 )2,1()2,1()2,1(
22

2
2

2
2
1

2
ψψ EV

mm
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+∇−∇− == . (8.145) 

                                                           
8 See Cooper [8.10]. 
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We seek a solution of the form 

 ∫ −⋅= kkrrk d)(e1)2,1(
)2(

)2,1( )(i
3

21 f
V

AV
π

ψ , (8.146) 

where A(1, 2) is the antisymmetric spin zero spin wave function 

 )]1()2()2()1([
2

1)2,1( βαβα −=A , 

with α, β being the usual spin-up and -down wave functions (note A†A = 1) and 
f(k) = +f(−k) so that the spatial wave function is symmetric (it can be shown that 
the ψ with spin 1 and antisymmetric wave function yields no energy shift, at least 
in our approximation, and in any case such wave functions correspond to p-state 
pairs that we are not considering). Note that the spatial wave function pairs off the 
electrons into (k, −k) states. 

Inserting (8.146) into (8.145) we have 
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Now multiply by 

 )(i† 21e1)2,1( rrk −⋅′−
V

A , 

and integrate over r1 and r2 and we obtain (r = r1 − r2, V(r1, r2) = V(r1 − r2) = V(r), 
and Ek = =2k2/2m) 

 [ ] ∫∫ ∫ ⋅′−⋅⋅′− =+ kkkrkr rkkrkrk de)(dde)()(2e )(iii EffVEk . (8.148) 

Using 

 )(de
)2(

1 i
3 kkrk δ

π
=∫ ⋅ , 

and 

 ∫ ⋅⋅′−
′ = rr rkrk

kk de)(e1 ii
, V

V
V , 

we obtain 

 0d)(
)2(

)(]2[ ,3 =′+′− ∫ ′′ kkk kkVfVfEEk
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. (8.149) 
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We suppose 

 
otherwise.0

,for00,
=

+<<<−= ′′ DFF EEEEVV ω=kkkk . 

Notice we are using the ideas that led us to (8.138), divide by 2Ek′ − E and inte-
grate over k′ and obtain (after canceling) 
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. (8.150) 

Note that in the limit of large volumes 
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where N(E) is the density of state for one spin per unit cell (N unit cells). Thus 
with Epair = E 
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Note we can replace N(E′) ≅ N(EF) because =ωD << EF so we obtain 
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Let δ = 2EF − Epair so 
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and in the weak coupling limit 

 ⎟⎟
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2exp2
0 F

D ENV
ωδ = . (8.154) 

We note in particular, the following points: 

1. A pair electron wave function that is independent of the direction of r1 − r2 is 
said to be an s wave function, which is consistent with an antisymmetric spin 
wave function. 

2. δ is not an analytic function of V0 so ordinary perturbation theory would not 
work. 

3. In the BCS theory one considers pairing of all electrons. 

4. For δ > 0 then the Fermi sea is unstable with respect to the formation of Cooper 
pairs. 
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BCS Hamiltonian 

Returning to the mainstream of the BCS argument, the above reasoning can be 
used to pick out the best wave function to use as a trial wave function for evaluat-
ing the ground-state energy by variational principle. For mathematical conven-
ience, it is easier to place these assumptions directly in the Hamiltonian. Also, due 
to exchange, the spins in the Cooper pairs are usually opposite. Thus, the interac-
tion part of the Hamiltonian is now written (fifth major approximation) with 
K = 0, 

 ↑↓−↓−−↑+∑−= k
qk

kqkqkq CCCCV
,

††
IH . (8.155) 

Next, assume a “BCS Hamiltonian” for interacting pairs consistent with 
(8.155), with k + q → k, k → k′, Vq = Vk−k′ = −Vk,k′ 
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where 

 με −=
m
k

2

22=
k , (8.157) 

and where μ is the chemical potential. Also 

 I0 HHH +≡ , (8.158) 

and note 

 *
,,, kkkkkk ′′′ == VVV . (8.159) 

As before C are Fermion (electron) annihilation operators, and C † are Fermion 
(electron) creation operators. Defining the pair creation and annihilation operators 

 †††
↓−↑= kkk CCb , (8.160) 

 ↑↓−= kkk CCb ; (8.161) 

and defining 
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−
= k

k , (8.162) 

we can show b̄  k
† = b̄  k

* using Tr(AB) = Tr(BA). We can also show in the representa-
tion we use that b̄   k

* = b̄   k. We define 

 *
, ΔΔ kk

k
kkk =−= ′

′
′∑ bV . (8.163) 
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As we will demonstrate later, this will turn out to be the gap parameter. We can 
write the interaction term as 

 kk
kk

kk ′
′

′∑= bbV †

,
,IH . (8.164) 

Note 

 )( kkkkkk ′′′′′′ −+=+= bbbbbb δ , (8.165) 

and 

 )( *†*†*†
kkkkkk ′′′′′′ −+=+= bbbbbb δ ; (8.166) 

 ††*†
kkkkk bbbbb δδ +=+= ; (8.167) 

and we will neglect (δbk′)×(δbk
†) terms. (This is sort of a mean-field-like approxi-

mation for pairs.) Thus, using (8.166) and (8.167) and neglecting O(δb2) terms, we 
can write 
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assuming b̄   k is real. Also, 
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Thus, 

 ∑∑ −+−=
k
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k

k )( †† bbbCC k ΔΔΔε σσ
σ

H . (8.170) 

We now diagonalize by a Bogoliubov–Valatin transformation: 

 †
kkkkk βα vuC +=↑ , (8.171) 

 †
kkkkk αβ vuC −=↓− ; (8.172) 

where uk
2 + vk

2 = 1 (to preserve anticommutation relations), uk and vk are real, and 
the α and β given by 

 ↓−↑ −= kkkkk CvCu ††α , (8.173) 

 ↑↓− += kkkkk CvCu ††β , (8.174) 
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are Fermion operators obeying the usual anticommutation relations. The αk
†, and 

βk
† create “bogolons”. The algebra gets a bit detailed here and one can skip along 

unless curious, 

 ))(( ††
kkkkkkkkkkk βαβα vuuvCCb ++−== ↑↓−  (8.175) 

 ))(( †††††
kkkkkkkkkkk βαβα uvvuCCb +−+== ↓−↑  (8.176) 

 ))(( †††
kkkkkkkkkk βαβα vuvuCC ++=↑↑  (8.177) 

 ))(( †††
kkkkkkkkkk βαβα uvuvCC +−+−=↓−↓−  (8.178) 
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 kkkkkkkkkkkkkkk αββαββαα 2††2†† uvvuuvb +−+−=  (8.180) 

 kkkkkkkkkkkkkkkk αββαββαα vuvuvuCC +++=↑↑
†††2†2†  (8.181) 

 kkkkkkkkkkkkkkkk βααβααββ uvvuvuCC −−+=↓−↓−
†††2†2†  (8.182) 
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 (8.183) 

Rewriting this we get 
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where 

 ∑ +−= )22( 2
kkkkkkk bvuvG ΔΔε . 

Next, choose 

 0)(2 22 =−+ kkkkkk uvvu Δε , (8.185) 
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so as to diagonalize the Hamiltonian. Also, using uk
2 + vk

2 = 1 let 
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k , (8.186) 

 auv 222 −=− kk , (8.187) 

 2
4
1 avu −=kk ; (8.188) 
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Rewriting, 

 Guvvu ++×−−= )()](2[ ††22
kkkkkkkkkk ββααεΔH . (8.192) 

But, define 
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and thus 
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Thus, after a bit of algebra, 

 kkkkkkk Euvvu =−− )](2 22εΔ . (8.196) 

So 

 GE ++= ∑k kkkkk )( †† ββααH , (8.197) 
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and G can be put in the form 

 ∑ +−= k kkkk )( bEG Δε . (8.198) 

Note by Fig. 8.20 and (8.193) how Ek predicts a gap, for clearly Ek ≥ Δ0. Continu-
ing 

 kkkkkkkkkkkkkkk αββαββαα 2††2†† uvvuuvb +−+−= . (8.199) 

But b̄  k involves only diagonal terms, so using an appropriate anticommutation re-
lation 
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so 

 )21( kkkk nvub −= , (8.201) 

where 
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f(Ek) is of course the Fermi function but it looks strange without the chemical po-
tential. This is because α†, β† do not change the particle number. See Marder 
[8.22]. Therefore, 
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Now assume that (not using = = 1) 

 DωεΔΔ =<=′ kk when , (8.204) 

 DwVV ωε =<−=′ kkk hen, , (8.205) 

 DωεΔ =>= kk when0 , (8.206) 

and 

 DwV ωε =>=′ kkk hen0, , (8.207) 

where ωD is the Debye frequency (see (8.138)) So, 
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For T = 0, then 

 ∑ ′
′ +

= k
k

222 Δε

ΔΔ V , (8.209) 

and for T ≠ 0, then 
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We can then write 
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If we further suppose that N(E) ≅ constant ≅ N(0) ≡ the density of states at the 
Fermi level, then (8.211) becomes 
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This equation can be written as 
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Fig. 8.20. Gap in single-particle excitations near the Fermi energy 
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in the weak coupling limit (when Δ << =ωD). Thus, in the weak coupling limit, we 
obtain 

 ⎟⎟
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1exp2 ωΔ = . (8.214) 

From (8.210) by similar reasoning 
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where, again, N(0) is the density of states at the Fermi energy. 
For T greater than some critical temperature there are no solutions for Δ, i.e. the 

energy gap no longer exists. We can determine Tc by using the fact that at T = Tc, 
Δ = 0. This says that 

 ∫= D dkT
VN

cω ε
ε

ε=
0

)2/tanh(
)0(

1 . (8.216) 

In the weak coupling approximation, when N(0)V << 1, we obtain from (8.216) 
that 
 ))0(/1exp(14.1 VNkT Dc −= ω= . (8.217) 

Equation (8.217) is a very important equation. It depends on three material 
properties: 

a) The Debye frequency ωD 

b) V that measures the strength of the electron–phonon coupling and 

c) N(0) that measures the number of electrons available at the Fermi energy. 

Note that typically ωD ∝ (m)–1/2, where m is the mass of atoms. This leads directly 
to the isotope effect. Note also the energy gap Eg = 2Δ(0) at absolute zero. 

We can combine this result with our result for the energy gap parameter in the 
ground state to derive a relation between the energy gap at absolute zero and the 
critical superconducting transition temperature with no magnetic field. By (8.217) 
and (8.214), we have that 

 cD kTVN
14.1
2))0(/1exp(2)0( =−= ωΔ = , (8.218) 

or 

 ckT52.3)0(2 =Δ . (8.219) 

Note that our expression for Δ(0) and Tc both involve the factor exp(−1/N(0)V); that 
is, a power series (in V) expansion for both Δ(0) and Tc have an essential singu 
larity in V. We could not have obtained reasonable results if we had tried ordinary 
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perturbation theory because with ordinary perturbation theory, we cannot repro-
duce the effect of an essential singularity in the perturbation. This is similar to what 
happened when we discussed a single Cooper pair. 

Our discussion has only been valid for weakly coupled superconductors. 
Roughly speaking, these have (Tc /θD)2 >~   (500)−2. Pb, Hg, and Nb are strongly cou-
pled, and for them (Tc /θD)2 ≥ (300)−2. Alternatively, the electron–phonon coupling 
parameter is about three times larger than is a typical weak coupling superconduc-
tor. A result for the strong coupling approximation is given below. 

8.5.4  Remarks on the Nambu Formalism and Strong Coupling 
Superconductivity (A) 

The Nambu approach to superconductivity is presented by matrices and diagrams. 
The Nambu formalism includes the possibility of Cooper pairs in the calculation 
from the beginning via two component field operators. This approach allows for 
the treatment of retardation effects that need to be included for the strong (electron 
lattice) coupling regime. An essential step in the development was taken by Eli-
ashberg and this leads to his equations. The Eliashberg strong coupling calculation 
of the superconducting transition temperature gives with a computer fit (via 
McMillan): 
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θD is the Debye temperature, and for definitions of λ (the coupling constant) and 
μ* (the Coulomb pseudopotential term) see Jones and March [8.17]. They also 
give a nice summary of the calculation. Briefly λ = N(0)Vphonon, μ = N(0)Vcoulomb 
where V in (8.218) is Vphonon − Vcoulomb, and 
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Usually λ empirically turns out to be not much larger than 5/4 (or smaller). 

 

k

k – q 

q 

 
Fig. 8.21. Lowest-order correction to self-energy Feynman diagram (for electrons due to 
phonons) 
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The calculation includes the self-energy terms. The lowest-order correction to 
self-energy for electrons due to phonons is indicated in Fig. 8.21. The BCS theory 
with the extension of Eliashberg and McMillan has been very successful for many 
superconductors. 

A nice reference to consult is Mattuck [8.23 pp. 267-272]. 

8.6  Magnesium Diboride (EE, MS, MET) 

For a review of the new superconductor magnesium diboride, see, e.g., Physics 
Today, March 2003, p. 34ff. The discovery of the superconductor MgB2, with a 
transition temperature of 39 K, was announced by Akimitsu in early 2001. At first 
sight this might not appear to be a particularly interesting discovery, compared to 
that of the high-temperature superconductors, but MgB2 has several interesting 
properties: 

1. It appears to be a conventional BCS superconductor with electron–phonon cou-
pling driving the formation of pairs. It shows a strong isotope effect. 

2. It does not appear to have the difficulty that the high-Tc cuprate ceramics have 
of having grain boundaries that inhibit current. 

3. It is a widely available material that comes right off the shelf. 

4. MgB2 is an intermetallic (two metals forming a crystal structure at a well-
defined stoichiometry) compound with a transition temperature near double 
that of Nb3Ge. 

Possibly, the transition temperature can be driven higher by tailoring the prop-
erties of magnesium diboride. At this writing, several groups are working in-
tensely on this material, with several interesting results including the fact that it 
has two superconducting gaps arising from two weakly interacting bands. 

8.7  Heavy-Electron Superconductors (EE, MS, MET) 

UBe13 (Tc = 0.85 K), CeCu2Si2 (Tc = 0.65 K), and UPt3 (Tc = 0.54 K) are heavy-
electron superconductors. They are characterized by having large low-temperature 
specific heats due to effective mass being two or three orders of magnitude larger 
than in normal metals (because of f band electrons). Heavy-electron superconduc-
tors do not appear to have a singlet state s-wave pairing, but perhaps can be char-
acterized as d-wave pairing or p-wave pairing (d and p referring to orbital symme-
try). It is also questionable whether the pairing is due to the exchange of virtual 
phonons—it may be due, e.g., to the exchange of virtual magnons. See, e.g., Burns 
[8.9 p51]. We have already mentioned these in Sect. 5.7. 
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8.8  High-Temperature Superconductors (EE, MS, MET) 

It has been said that Brazil is the country of the future and always has been as well 
as always will be. A similar comment has been made about superconductors. The 
problem is that superconductivity applications have been limited by the fact that 
liquid helium temperatures (of order 4 K) have been necessary to retain supercon-
ductivity. Liquid nitrogen (which boils at 77 K) is much cheaper and materials 
that superconduct at or above the boiling temperature of liquid nitrogen would 
open a large range of practical applications. Particularly important would be the 
transport of electrical power. 

Just finding a high superconducting transition temperature Tc, however, does 
not solve all problems. The critical current can be an important limiting factor. 
Thermally activated creep of fluxoids (due to J × B) can lower Jc (the critical cur-
rent) as the current interacts with the fluxoid and causes energy loss when the 
fluxoid becomes unpinned and thus creeps (can move). This is important in the 
high-Tc superconductors considered in this section. 

Until 1986, the highest transition temperature for a superconductor was Tc = 
23.2 K for Nb3Ge. Then Bednortz and Müller found a ceramic oxide (product of 
clay) of lanthanum, barium, and copper became superconducting at about 35 K. 
For this work they won the Nobel prize for Physics in 1987. Since Bednortz’s 
pioneering work several other high-Tc superconductors have been found. 

The “1-2-3” compound YBa2Cu3O7, has a Tc of 92 K. The “2-1-4” compound 
(e.g. BaxLa2–xCuO4–y) are another class of high-Tc superconductors. 
Tl2Ba2Ca2Cu3O10 has a remarkably high Tc of 125 K. 

The high-Tc materials are type II and typically have a penetration depth to co-
herence length ratio K ≈ 100 and typically have a very large upper critical field. 
As we have mentioned, thermally activated creep of fluxoids due to the J × B 
force may cause energy dissipation and limit useable current values. For real ma-
terials, the critical current (Jc), critical temperature (Tc), and critical magnetic field 
(Bc) vary, but can be conveniently represented as shown in Fig. 8.22. As men-
tioned, the high-temperature superconductors (HTSs) are typically type II and also 
their Jc parallel to the copper oxide sheets (mentioned below) ≈ 107 A/cm2, while 
perpendicular to the sheets Jc can be about 107 A/cm2. A schematic of J, Bc, and Tc 
is shown in Fig. 8.22 for type I materials. For HTS, the representation of Fig. 8.22 
is not complex enough. In Table 8.1 we list selected superconductor elements and 
compounds along with their transition temperature. 

For HTS, we are faced with a puzzle as to what causes some ceramic copper ox-
ide materials to be superconductors at temperatures well above 100 K. In conven-
tional superconductors, we talk about electrons paired into spherically symmetric 
wave functions (s-waves) due to exchange of virtual phonons. Apparently, lattice 
vibrations cannot produce a strong enough coupling to produce such high critical 
temperatures. It appears parallel Cu-O planes in these materials play some very sig-
nificant but not yet fully understood role. Hole conduction in these planes is impor-
tant. As mentioned, there is also a strong anisotropy in electrical conduction. Al-
though there seems to be increasing evidence for d-wave pairing, the exchange 
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mechanism necessary to produce the pair is still not clear as of this writing. It could 
be due to magnetic interactions or there may be new physics. See, e.g., Burns [8.9]. 

Table 8.1. Superconductors and their transition temperatures 

Selected elements* Transition temperature Tc (K) 

Al  1 .17 
Hg  4 .15 
Nb  9 .25 
Sn  3 .72 

Pb  7 .2 

Selected compounds*  

Nb3Ge  23 .2 
Nb3Sn  18 .  
Nb3Au  10 .8 
NbSe2  7 .2 
MgB2**  39 

Copper oxide (HTS)*  

Bi2Sr2Ca2Cu3O10  ~110  

YBa2Cu3O7  ~92 

Tl2Ba2Ca3Cu4O11  ~122  

Heavy fermion*  

UBe13  0 .85 
CeCu2Si2  0 .65 
UPt3  0 .54 

Fullerenes***  

K3C60  19 .2 
RbCs2C60  33  

*Reprinted from Burns G, High Temperature Superconductivity Ta-
ble 2-1 p. 8 and Table 3-1 p. 57, Academic Press, Copyright 1992, 
with permission from Elsevier. On p. 52 Burns also briefly discusses 
organic superconductors. 
**Canfield PC and Crabtree GW, Physics Today 56(3), 34 (2003). 
***Huffmann DR, “Solid C60,” Physics Today 41(11), 22 (1991). 
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Fig. 8.22. J, B, T surface separating superconducting and normal regions 

8.9  Summary Comments on Superconductivity (B) 

1. In the superconducting state E = 0 (superconductivity implies the resistivity ρ 
vanishes, ρ → 0). 

2. The superconducting state is more than vanishing resistivity since this would 
imply B was constant, whereas B = 0 in the superconducting state (flux is ex-
cluded as we drop below the transition temperature). 

3. For “normal” BCS theory: 

a) An attractive interaction between electrons can lead to a ground state sepa-
rated from the excited states by an energy gap. Most of the important prop-
erties of superconductors follow from this energy gap. 

b) The electron–lattice interaction, which can lead to an effective attractive in-
teraction, causes the energy gap. 

c) The ideas of the penetration depth (and, hence, the Meissner effect—flux 
exclusion) and the coherence length follow from the theory of superconduc-
tivity. 

4. Type II superconductors have upper and lower critical fields and are techni-
cally important because of their high upper critical fields. Magnetic flux can 
penetrate between the upper and lower critical fields, and the penetration is 
quantized in units of hc/|2e|, just as is the magnetic flux through a supercon-
ducting ring. Using a unit of charge of 2e is consistent with Cooper pairs. 
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5. In zero magnetic fields, for weak superconductors, superconductivity occurs at 
the transition temperature: 

 )/1exp(14.1 00VNTk DcB −≅ ω= , (8.220) 

where N0 is half the density of single-electron states, V0 is the effective interac-
tion between electron pairs near the Fermi surface, and =ωD ≅ =θD, where θD is 
the Debye temperature. 

6. The energy gap (2Δ) is determined by (weak coupling): 
 cD kTVN 76.1)/1exp(2)0( 00 =−≅ ωΔ =  (8.221) 
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7. The critical field is fairly close to the empirical law (for weak coupling): 
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8. The coherent motion of the electrons results in a resistanceless flow because a 
small perturbation cannot disturb one pair of electrons without disturbing all of 
them. Thus, even a small energy gap can inhibit scattering. 

9. The central properties of superconductors are the penetration depth λ (of mag-
netic fields) and the coherence length ξ (or “size” of Cooper pairs). Small λ/ξ 
ratios lead to type I superconductors, and large λ/ξ ratios lead to type II behav-
ior. ξ can be decreased by alloying. 

10. The Ginzburg–Landau theory is used for superconductors in a magnetic field 
where one has inhomogeneities in spatial behavior. 

11. We should also mention that one way to think about the superconducting tran-
sition is a Bose–Einstein condensation, as modified by their interaction, of 
bosonic Cooper pairs. 

12. See the comment on spontaneously broken symmetry in the chapter on mag-
netism. Superconductivity can be viewed as a broken symmetry. 

13. In the paired electrons of superconductivity, in s and d waves, the spins are anti-
parallel, and so one understands why ferromagnetism and superconductivity 
don’t appear to coexist, at least normally. However, even p-wave superconduc-
tors (e.g. Strontium Ruthenate) with parallel spins the magnetic fields are com-
monly expelled in the superconducting state. Recently, however, two materials 
have been discovered in which ferromagnetism and superconductivity coexist. 
They are UGe2 (under pressure) and ZrZn2 (at ambient pressure). One idea is 
that these two materials are p-wave superconductors. The issues about these ma-
terials are far from settled, however. See Physics Today, p. 16, Sept. 2001. 

14. Also, high-Tc (over 100 K) superconductors have been discovered and much 
work remains to understand them. 
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In Table 8.2 we give a subjective “Top Ten” of superconductivity research. 

Table 8.2  Top 10 of superconductivity (subjective) 

Person Achievement Date/comments 

1. H. Kammerlingh Onnes Liquefied He 
Found resistance of Hg → 0 
at 4.19 K 

1908 – Started low-T physics 
1911 – Discovered supercon-

ducting state 
1911 – Nobel Prize 

2. W. Meissner and  
R. Ochsenfeld 

Perfect diamagnetism 1933 – Flux exclusion 

3. F. and H. London London equations and flux 
expulsion 

1935 – B proportional to curl of 
J 

4. V.L. Ginzburg and L.D. 
Landau 

Phenomenological equations 1950 – Eventually GLAG 
equations 

1962 – Nobel Prize, Landau 
2003 – Nobel Prize, Ginzburg 

A. A. Abrikosov Improvement to GL equa-
tions, Type II 

1957 – Negative surface energy 
2003 – Nobel Prize 

L. P. Gor’kov GL limit of BCS and order 
parameter 

1959 – Order parameter pro-
portional to gap pa-
rameter 

5. A. B. Pippard Nonlocal electrodynamics 1953 – x and l dependent on 
mean free path in alloys 

6. J. Bardeen, L. Cooper, 
and J. Schrieffer 

Theory of superconductivity 1957 – e.g. see (8.217) 
1972 – Nobel Prize (all three) 

7. I. Giaver Single-particle tunneling 1960 – Get gap energy 
1973 – Nobel Prize 

8. B. D. Josephson Pair tunneling 1962 – SQUIDS and metrology 
1973 – Nobel Prize 

9. Z. Fisk, et al Heavy fermion “exotic” su-
perconductors 

1985 – Pairing different than 
BCS, probably 

10. J.G. Bednorz and K. A. 
Muller 

High-temperature supercon-
ductivity 

1986 – Now, Tcs are over 
100 K 

1987 – Nobel Prize (both) 
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Problems 

8.1 Show that the flux in a superconducting ring is quantized in units of h/q, 
where q = |2e|. 

8.2 Derive an expression for the single-particle tunneling current between two 
superconductors separated by an insulator at absolute zero. If ET is measured 
from the Fermi energy, you can calculate a density of states as below. 

 

2Δ1 2Δ2
Fermi 
Energy 

Δ2 

Δ1 E

a 

b 
c 

d 

e 

a to e: eV 
a to d: eV – Δ2 
b to e: eV – Δ1 
c to e: eV – E, if c is at E 

(+)

(–)

(1) (2) (1) (2)

V = 0 V ≠ 0 
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where D(0) is the number of states per unit energy without pairing. 



 

 

9  Dielectrics and Ferroelectrics 

Despite the fact that the concept of the dielectric constant is often taught in intro-
ductory physics – because, e.g., of its applications to capacitors – the concept in-
volves subtle physics. The purpose of this chapter is to review the important di-
electric properties of solids without glossing over the intrinsic difficulties. 

Dielectric properties are important for insulators and semiconductors. When a 
dielectric insulator is placed in an external field, the field (if weak) induces a po-
larization that varies linearly with the field. The constant of proportionality deter-
mines the dielectric constant. Both static and time-varying external fields are of 
interest, and the dielectric constant may depend on the frequency of the external 
field. For typical dielectrics at optical frequencies, there is a simple relation be-
tween the index of refraction and the dielectric constant. Thus, there is a close re-
lation between optical and dielectric properties. This will be discussed in more de-
tail in the next chapter. 

In some solids, below a critical temperature, the polarization may “freeze in.” 
This is the phenomena of ferroelectricity, which we will also discuss in this chap-
ter. In some ways ferroelectric and ferromagnetic behavior are analogous. 

Dielectric behavior also relates to metals particularly by the idea of “dielectric 
screening” in a quasifree-electron gas. In metals, a generalized definition of the 
dielectric constant allows us to discuss important aspects of the many-body prop-
erties of conduction electrons. We will discuss this in some detail. 

Thus, we wish to describe the ways that solids exhibit dielectric behavior. This 
has practical as well as intrinsic interest and is needed as a basis for the next chap-
ter on optical properties. 

9.1  The Four Types of Dielectric Behavior (B) 

1. The polarization of the electronic cloud around the atoms: When an external 
electric field is applied, the electronic charge clouds are distorted. The resulting 
polarization is directly related to the dielectric constant. There are “anomalies” in 
the dielectric constant or refractive index at frequencies in which the atoms can 
absorb energies (resonance frequencies, or in the case of solids, interband fre-
quencies). These often occur in the visible or ultraviolet. At lower frequencies, the 
dielectric constant is practically independent of frequency. 

2. The motion of the charged ions: This effect is primarily of interest in ionic crys-
tals in which the positive and negative ions can move with respect to one another 
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and thus polarize the crystal. In an ionic crystal, the resonant frequencies associ-
ated with the relative motion of the positive and negative ions are in the infrared 
and will be discussed in the optics chapter in connection with the restrahlen effect. 

3. The rotation of molecules with permanent dipole moments: This is perhaps the 
easiest type of dielectric behavior to understand. In an electric field, the dipoles 
tend to line up with the electric fields, while thermal effects tend to oppose this 
alignment, and so, the phenomenon is temperature dependent. This type of dielec-
tric behavior is mostly relevant for liquids and gases. 

4. The dielectric screening of a quasifree electron gas: This is a many-body prob-
lem of a gas of electrons interacting via the Coulomb interaction. The technique of 
using the dielectric constant with frequency and wave-vector dependence will be 
discussed. This phenomena is of interest for metals. 

Perhaps we should mention electrets here as a fifth type of dielectric behavior 
in which the polarization may remain, at least for a very long time after the re-
moval of an electric field. In some ways an electret is analogous to a magnet. The 
behavior of electrets appears to be complex and as yet they have not found wide 
applications. Electrets occur in organic waxes due to frozen in disorder that is long 
lived but probably metastable.1 

9.2  Electronic Polarization and the Dielectric Constant 
(B) 

The ideas in this Section link up closely with optical properties of solids. In the 
chapter on the optical properties of solids, we will relate the complex index of re-
fraction to the absorption and reflection of electromagnetic radiation. Now, we 
remind the reader of a simple picture, which relates the complex index of refrac-
tion to the dynamics of electron motion. We will include damping. 

Our model considers matters only from a classical point of view. We limit dis-
cussion to electrons in bound states, but for some solids we may want to consider 
quasifree electrons or both bound and quasifree electrons. For electrons bound by 
Hooke’s law forces, the equation describing their motion in an alternating electric 
field E = E0exp(−iωt) may be written (e > 0) 

 )iexp(
d
d

d
d

0
2
02

2
teExm
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xm

x
xm ωω

τ
−−=++ . (9.1) 

                                                           
1 See Gutmann [9.9]. See also Bauer et al [9.1]. 
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The term containing τ is the damping term, which can be due to the emission of 
radiation or the other frictional processes. ω0 is the natural oscillation frequency of 
the elastically bound electron of charge e and mass m. The steady-state solution is 
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Below, we will assume that the field at the electronic site is the same as the av-
erage internal field. This completely neglects local field effects. However, we will 
follow this discussion with a discussion of local field effects, and in any case, 
much of the basic physics can be done without them. In effect, we are looking at 
atomic effects while excluding some interactions. 

If N is the number of charges per unit volume, with the above assumptions, we 
write: 
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where ε is the dielectric constant and α is the polarizability. Using E = 
E0exp(−iωt), 
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The complex dielectric constant is then given by 
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where we have absorbed the ε0 into εr and εi for convenience. The real and the 
imaginary parts of the dielectric constant are then given by: 
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In the chapter on optical properties, we will note that the connection (10.8) be-
tween the complex refractive index and the complex dielectric constant is: 

 )i()i( 22
iric nnn εε +=+= . (9.8) 

Therefore, 

 rinn ε=− 22 , (9.9) 

 iinn ε=2 . (9.10) 
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Thus, explicit equations for fundamental optical constants n and ni are: 
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Quantum mechanics produces very similar equations. The results as given by 
Moss2 are 

 ∑
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where the fij are called oscillator strengths and are defined by  
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with Ei and Ej being the energies corresponding to the wave functions ψi and ψj. In 
a solid, because of the presence of neighboring dipoles, the local electric field 
does not equal the applied electric field. 

Clearly, dielectric and optical properties are not easy to separate. Further dis-
cussion of optical-related dielectric properties comes in the next chapter. 

We now want to examine some consequences of local fields. We also want to 
keep in mind that we will be talking about total dielectric constants and total po-
larizability. Thus in an ionic crystal, there are contributions to the polarizabilities 
and dielectric constants from both electronic and ionic motion. 

The first question we must answer is, “If an external field, E, is applied to a crys-
tal, what electric field acts on an atom in the crystal?” See Fig. 9.1. The slab is 
maintained between two plates that are connected to a battery of constant voltage V. 
Fringing fields are neglected. Thus, the electric field, E0, between the plates before 
the slab is inserted, is the same as the electric field in the solid-state after insertion 

                                                           
2 See Moss [9.13]. Note ni refers to the imaginary part of the dielectric constant on the left 

of these equations and in fij, i refers to the initial state, while j refers to the final state. 
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(so, E0d = V). This is also the same as the electric field in a needle-shaped cavity in 
the slab. The electric field acting on the atom is 

 cba EEEEE +++′= 0loc , (9.17) 

where, E′0 is the electric field due to charge on the plates after the slab is inserted, 
Ea is the electric field due to the polarization charges on the faces of the slab, and 
Eb is the electric field due to polarization charges on the surface of the spherical 
cavity (which exists in our imagination), and Ec is the polarization due to charges 
interior to the cavity that we assume (in total) sums to zero. 

It is, of course, an approximation to write Eloc in the above form. Strictly speak-
ing, to find the field at any particular atom, we should sum over the contributions 
to this field from all other atoms. Since this is an impossible task, we treat macro-
scopically all atoms that are sufficiently far from A (and outside the cavity). 

By Gauss’ law, we know the electric field due to two plates with a uniform 
charge density (±σ) is E = σ/ε. Further, σ due to P ending on the boundary of a 
slab is σ = P (from electrostatics). Since the polarization charges on the surface of 
the slabs will oppose the electric field of the plate and since charge will flow to 
maintain constant voltage. 

 PEE −′= 0000 εε , (9.18) 

or 

 
0

00 ε
PEE +=′ . (9.19) 

 

Spherical cavity

Atom A

Slab

d
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Fig. 9.2. The polarized slab 
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Fig. 9.3. Polarized charges around the cavity 

Clearly, Ea = −P/ε0 (see Fig. 9.2), and for all cubic crystals, Ec = 0. So, 

 bEEE += 0loc . (9.20) 

Using Fig. 9.3, since σρ = P·n (n is outward normal), the charge on an annular re-
gion of the surface of the cavity is 
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Thus Eb = P/3ε0, and so we find 
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Since E0 is also the average electric field in the solid, the dielectric constant is de-
fined as 
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The polarization is the dipole moment per unit volume, and so, it is given by 

 ∑= (atoms) loci ii
i NEP α , (9.26) 

where Ni is the number of atoms per unit volume of type i, and αi is the appropri-
ate polarizability (which can include ionic, as well as electronic motions). Thus, 
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which can be arranged to give the Clausius–Mossotti equation 
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In the optical range of frequencies (the order of but less than 1015 cps), n2 = ε/ε0, 
and the equation becomes the Lorentz–Lorenz equation 
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Finally, we show that when one resonant peak dominates, the only effect of the 
local field is to shift the dormant resonant (natural) frequency. From 
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we have 
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where 
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is the plasma frequency. From this, we easily show 
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where 
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2
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1
pωωω −=′ , (9.37) 

which is exactly what we would have obtained in the beginning (from (9.32) and 
(9.33)) if ω0 → ω′0, and if the term Nα/3ε0 had been neglected. 

9.3  Ferroelectric Crystals (B) 

All ferroelectric crystals are polar crystals.3 Because of their structure, polar crys-
tals have a permanent electric dipole moment. If ρ(r) is the total charge density, 
we know for polar crystals 

 ∫ ≠ 0d)( Vrrρ . (9.38) 

Pyroelectric crystals have a polarization that changes with temperature. All polar 
crystals are pyroelectric, but not all polar crystals are ferroelectric. Ferroelectric 
crystals are polar crystals whose polarization can be reversed by an electric field. 
All ferroelectric crystals are also piezoelectric, in which stress changes the polari-
zation. Piezoelectric crystals are suited for making electromechanical transducers 
with a variety of applications. 

Ferroelectric crystals often have unusual properties. Rochelle salt 
NaKC4H4O6

.4H2O, which was the first ferroelectric crystal discovered, has both 
an upper and lower transition temperature. The crystal is only polarized between 
the two transition temperatures. The “TGS” type of ferroelectric, including trigly-
cine sulfate and triglycine selenate, is another common class of ferroelectrics and 
has found application to IR detectors due to its pyroelectric properties. Ferroelec-
tric crystals with hydrogen bonds (e.g. KH2PO4, which was the second ferroelec-
tric crystal discovered) undergo an appreciable change in transition temperature 
when the crystal is deuterated (with deuterons replacing the H nuclei). BaTiO3 
was the first mechanically hard ferroelectric crystal that was discovered. Ferro-
electric crystals are often classified as displacive, involving a lattice distortion (i.e. 
barium titinate, BaTiO3, see Fig. 9.4), or order–disorder (i.e. potassium dihydro-
gen phosphate, KH2PO4, which involves the ordering of protons). 

                                                           
3 Ferroelectrics: The term ferro is used but iron has nothing to do with it. Low symmetry 

causes spontaneous polarization. 
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Barium, Ba2+ 

Titanium, Ti4+ 

Oxygen, O2– 

 
Fig. 9.4. Unit cell of barium titanate. The displacive transition is indicated by the direction 
of the arrows 

In a little more detail, displacive ferroelectrics involve transitions associated 
with the displacement of a whole sublattice. How this could arises is discussed in 
Sect. 9.3.3 where we talk about the soft mode model. The soft mode theory, intro-
duced in 1960, has turned out to be a unifying principle in ferroelectricity (see 
Lines and Glass [9.12]). Order–disorder ferroelectrics have transitions associated 
with the ordering of ions. We have mentioned in this regard KH2PO4 as a crystal 
with hydrogen bonds in which the motion of protons is important. Ferroelectrics 
have found application as memories, their high dielectric constant is exploited in 
making capacitors, and ferroelectric cooling is another area of application. 

Other examples include ferroelectric cubic perovskite (PZT) PbZr(x)Ti(1–x)O3, 
Tc = 670 K. The ferroelectric BaMgF4 (BMF) does not show a Curie T even up to 
melting. These are other familiar ferroelectrics as given below. 

The central problem of ferroelectricity is to be able to describe the onset of 
spontaneous polarization. Spontaneous polarization is said to exist if, in the ab-
sence of an electric field, the free energy is minimum for a finite value of the po-
larization. There may be some ordering involved in a ferroelectric transition, as in 
a ferromagnetic transition, but the two differ by the fact that the ferroelectric tran-
sition in a solid always involves the creation of dipoles. 

Just as for ferromagnets, a ferroelectric crystal undergoes a phase transition 
from the paraelectric phase to the ferroelectric phase, typically, as the temperature 
is lowered. The transition can be either first order (with a latent heat, i.e. BaTiO3) 
or second order (without latent heat, i.e. LiTaO3). Just as for ferromagnets, the 
ferroelectric will typically split into domains of varying size and orientation of po-
larization. The domain structure forms to reduce the energy. Ferroelectrics show 
hysteresis effects just like ferromagnets. Although we will not discuss it here, it is 
also possible to have antiferroelectrics that one can think of as arising from anti-
parallel orientation of neighboring unit cells. A simple model of spontaneous po-
larization is obtained if we use the Clausius–Mossotti equation and assume (unre-
alistically for solids) that polarization arises from orientation effects. This is 
discussed briefly in a later section. 



518      9 Dielectrics and Ferroelectrics 

 

9.3.1  Thermodynamics of Ferroelectricity by Landau Theory (B) 

For both first-order (γ < 0, latent heat, G continuous) and second-order (γ > 0, no 
latent heat, G′ (first derivatives) are continuous and we can choose δ = 0), we as-
sume for the Gibbs free energy G′ [9.6 Chap. 3, generally assumed for displacive 
transitions], 

 0,  ; 
6
1

4
1)(

2
1 642

00 >++−+= δβδγβ PPPTTGG . (9.39) 

(By symmetry, only even powers are possible. Also, in a second-order transition, 
P is continuous at the transition temperature Tc, whereas in a first-order one it is 
not.) From this we can calculate 
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P
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∂ ++−== , (9.40) 
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Notice in the paraelectric phase, P = 0 so E = 0 and χ = 1/β(T − T0), and therefore 
Curie–Weiss behavior is included in (9.39). For T < Tc and E = 0 for second order 
where δ = 0, β(T − T0)P + γP3 = 0, so 

 )( 0
2 TTP −−=

γ
β , (9.42) 

or 

 )( 0 TTP −±=
γ
β , (9.43) 

which again is Curie–Weiss behavior (we assume γ > 0). For T = Tc = T0, we can 
show the stable solution is the polarized one. 

For first order set E = 0, solve for P and exclude the solution for which the free 
energy is a maximum. We find (where we assume γ < 0) 
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Now, G(PSC) = Gpolar = Gnonpolar = G0 at the transition temperature. Using the ex-
pression for G (9.39) and the expression that results from setting E = 0 (9.40), we 
find 

 2
SC0 4

PTTc β
γ−= . (9.44) 
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By E = 0, we find (using (9.44)) 

 0
4

3 5
SC

3
SC =+ PP δγ , (9.45) 

so 

 
δ
γ

4
32

SC −=P . (9.46) 

Putting (9.46) into (9.44) gives 

 
βδ
γ

16
3 2

0 += TTc . (9.47) 

Figures 9.5, 9.6, and 9.7 give further insight into first- and second-order transi-
tions. 

 
Fig. 9.5. Sketch of (a) first-order and (b) second-order ferroelectric transitions 

 
Fig. 9.6. Sketch of variation of Gibbs free energy G(T, p) for first-order transitions 
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Fig. 9.7. Sketch of variations of Gibbs free energy G(T,p) for second-order transitions 

9.3.2  Further Comment on the Ferroelectric Transition (B, ME) 

Suppose we have N permanent, noninteracting dipoles P per unit volume, at tem-
perature T, in an electric field E. At high temperature, simple statistical mechanics 
shows that the polarizability per molecule is 

 
kT
p

3

2
=α . (9.48) 

Combining this with the Clausius–Mossotti equation (9.29) gives 
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+=
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As T → Tc, we obtain the “polarization catastrophe”. For a real crystal, even if this 
were a reasonable approach, the equation would break down well before T = Tc, and 
at T = Tc, we would assume that permanent polarization had set in. Near T = Tc, the 1 
is negligible, and we have essentially a Curie–Weiss type of behavior. However, this 
derivation should not be taken too seriously, even though the result is reasonable. 

Another way of viewing the ferroelectric transition is by the Lyddane–Sachs–
Teller (LST) relation. This is developed in the next chapter, see (10.204). Here an 
infinite dielectric constant implies a zero-frequency optical mode. This leads to 
Cochran’s theory of ferroelectricity arising from “soft” optic modes. The LST re-
lation can be written 
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where ωT is the transverse optical frequency, ωL is the longitudinal optical fre-
quency (both at low wave vector), ε(∞) is the high-frequency limit of the dielectric 
constant and ε(0) is the low-frequency (static) limit. Thus a Curie–Weiss behavior 
for ε(0) as 

 )(
)0(

1
cTT −∝

ε
 (9.51) 

is consistent with 

 )(2
cT TT −∝ω . (9.52) 

Table 9.1. Selected ferroelectric crystals 

Type Crystal  Tc (K) 

KDP KH2PO4 123 
TGS Triglycine sulfate 322 

Perovskites BaTiO3 406 
 PbTiO3 765 
 LiNbO3 1483 

From Anderson HL (ed), A Physicists Desk Reference 2nd edn, 
American Institute of Physics, Article 20: Frederikse HPR, p.314, 
Table 20.02.C.1., 1989, with permission of Springer-Verlag. 
Original data from Kittel C, Introduction to Solid State Physics, 
4th edn, p.476, Wiley, NY, 1971. 

Cochran has pioneered the approach to a microscopic theory of the onset of 
spontaneous polarization by the soft mode or “freezing out” (frequency going to 
zero) of an optic mode of zero wave vector. The vanishing frequency appears to 
result from a canceling of short-range and long-range (Coulomb) forces between 
ions. Not all ferroelectric transitions are easily associated with phonon modes. For 
example, the order–disorder transition is associated with the ordering of protons in 
potential wells with double minima above the transition. Transition temperatures 
for some typical ferroelectrics are given in Table 9.1. 

9.3.3  One-Dimensional Model of the Soft Mode of Ferroelectric 
Transitions (A) 

In order to get a better picture of what the soft mode theory involves, we present  
a one-dimensional model below that is designed to show ferroelectric behavior. 



522      9 Dielectrics and Ferroelectrics 

 

Anderson and Cochran have suggested that the phase transition in certain ferro-
electrics results from an instability of one of the normal vibrational modes of the 
lattice. Suppose that at some temperature Tc 

a) An infinite-wavelength optical mode is accompanied by the condition that the 
vibrational frequency ω for that mode is zero. 

b) The effective restoring force for this mode for the ion displacements equals 
zero. This condition has prompted the terminology, “soft” mode ferroelectrics. 

If these conditions are satisfied, it is seen that the static ion displacements would 
give rise to a “frozen-in” electric dipole moment–that is, spontaneous polarization. 
The idea is shown in Fig. 9.8. 

We now consider a one-dimensional lattice consisting of two atoms per unit 
cell, see Fig. 9.9. The atoms (ions) have, respectively, mass m1 and m2 with charge 
e1 = e and e2 = −e. The equilibrium separation distance between atoms is the dis-
tance a/2. 

 - - - - 

+ + + +  
Fig. 9.8. Schematic for ferroelectric mode in one dimension 

 m1, e1 m2, e2 m1, e1 m2, e2

a  
Fig. 9.9. One-dimensional model for ferroelectric transition (masses mi, charges ei) 

It should be pointed out that in an ionic, one-dimensional model, a unit cell ex-
hibits a nonzero electric polarization—even when the ions are in their equilibrium 
positions. However, in three dimensions, one can find a unit cell that possesses 
zero polarization when the atoms are in equilibrium positions. Since our interest is 
to present a model that reflects important features of the more complicated three-
dimensional model, we are interested only in the electric polarization that arises 
because of displacements away from equilibrium positions. We could propose for 
the one-dimensional model the existence of fixed charges that will cancel the 
equilibrium position polarization but that have no other effect. At any rate, we will 
disregard equilibrium position polarization. 
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We define xkb as the displacement from its equilibrium position of the bth atom 
(b = 1, 2) in the kth unit cell. For N atoms, we assume that the displacements of 
the atoms from equilibrium give rise to a polarization, P, where 

 ∑ ′′ ′′= bk bbk ex
N

P ,
1 . (9.53) 

The equation of motion of the bth atom in the kth unit cell can be written 

 PcexkkJxm bbk bkbbkbb =′−+∑ ′′ ′′′, )(�� , (9.54) 

where 
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∂=′−
2
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This equation is, of course, Newton’s second law, F = ma, applied to a particu-
lar ion. The second term on the left-hand side represents a “spring-like” interac-
tion obtained from a power series expansion to the second order of the potential 
energy, V, of the crystal. The right-hand side represents a long-range electrical 
force represented by a local electric field that is proportional to the local electric 
field Eloc = cP, where c is a constant. 

As a further approximation, we assume the spring-like interactions are nearest 
neighbors, so 
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where γ is the spring constant. By direct calculation, we find for the Jbb′ 
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We rewrite our dynamical equation in terms of h = k′ − k 

 ∑∑ ′ ′′+′ ′+′ =+ bh bbkh
b

bh bkhbbkbb ex
N

cexhJxm , ,, ,)(�� . (9.58) 

Since this equation is translationally invariant, it has solutions that satisfy Bloch’s 
theorem. Thus, there exists a wave vector k such that 

 obkb xkqax )iexp(= , (9.59) 

where xob is the displacement of the bth atom in the cell chosen as the origin for 
the lattice vectors. Substituting, we find 

 ∑∑ ′ ′′′ ′′ =+ bh bbo
b

bh bobbkbb exhqa
N

cexhqakJxm ,, )iexp()iexp()(�� . (9.60) 
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We simplify by defining  

 ∑ ′′ = h bbbb hqahJqG )iexp()()( . (9.61) 

Using the results for Jbb′, we find 

 
. )]iexp(1[

, )]iexp(1[
, 2

21
12

2211

qaG
qaG

GG

−−−=
+−=

==

γ
γ
γ

 (9.62) 

In addition, since 

 ∑ =h qNhqa 0)iexp( δ , (9.63) 

we finally obtain, 

 ∑∑ ′ ′′′ ′′ =+ b bboqbb bobbobb excexqGxm 0)( δ�� . (9.64) 

As in the ordinary theory of vibrations, we assume xob contains a time factor 
exp(iωt), so 

 obob xx 2ω−=�� . (9.65) 

The polarization term only affects the q → 0 solution, which we look at now. Let-
ting q = 0, and e1 = −e2 = e, we obtain the following two equations: 
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and 
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These two equations can be written in matrix form: 
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where d = 2γ − ce2. From the secular equation, we obtain the following: 

 0])([ 21
2

21
2 =+− dmmmm ωω . (9.69) 

The solution ω = 0 is the long-wavelength acoustic mode frequency. The other so-
lution, ω2 = d/μ with 1/μ = 1/m1 + 1/m2, is the optic mode long-wavelength fre-
quency. For this frequency 

 2211 oo xmxm =− . (9.70) 
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So, 
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and P ≠ 0 if xo1 ≠ 0. Suppose 
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then 

 cTTd =→= at02
μ

ω , (9.73) 

and 

 cooo TTxxdxmF →→+==  as 0)( 21111 �� . (9.74) 

So, a solution is xo1 = constant ≠ 0. That is, the model shows a ferroelectric solu-
tion for T → Tc. 

9.4  Dielectric Screening and Plasma Oscillations (B) 

We begin now to discuss more complex issues. We want to discuss the nature of a 
gas of interacting electrons. This topic is closely related to the occurrence of oscil-
lations in gas-discharge plasmas and is linked to earlier work of Langmuir and 
Tonks.4 We begin by considering the subject of plasma oscillations. The general 
idea can be presented from a classical viewpoint, so we start by assuming the si-
multaneous validity of Newton’s laws and Maxwell’s equations. 

Let n0 be the number density of electrons in equilibrium. We assume an equal 
distribution of positive charge that remains uniform and, thus, supplies a constant 
background. We will consider one dimension only and, thus, consider only longi-
tudinal plasma oscillations. 

                                                           
4 See Tonks and Langmuir [9.19]. 
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Fig. 9.10. Schematic used to discuss plasma vibration 

Let u(x, t) represent the displacement of electrons whose equilibrium position is 
x and refer to Fig. 9.10 to compute the change in density Let e represent the mag-
nitude of the electronic charge. Since the positive charge remains at rest, the total 
charge density is given by ρ = −(n − n0)e. Since the same number of electrons is 
contained in the new volume as the old volume. 
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Thus, 
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In one-dimension, Gauss’ law is 
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Integrating and using the boundary condition that (Ex)n = 0 = 0, we have 
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A simpler derivation is discussed in the optics chapter (see Sect. 10.9). Using 
Newton’s second law with force −eEx, we have 
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with solution 

 )const.cos(0 += tuu pω , (9.80) 
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where 

 0
2

0 / εω menp =  (9.81) 

is the plasma frequency of electron oscillation. The quanta associated with this 
type of excitation are called plasmons. For a typical gas in a discharge tube, ωP ≅ 
1010 s−1, while for a typical metal, ωP ≅ 1016 s−1. 

More detailed discussions of plasma effects and electrons can be made by using 
frequency- and wave-vector-dependent dielectric constants. See Sect. 9.5.3 for 
further details where we will discuss screening in some detail. We define ε(q, ω) 
as the proportionality constant between the space and time Fourier transform 
components of the electric field and electric displacement vectors. We generally 
assume ε(ω) = ε(q = 0, ω) provides an adequate description of dielectric properties 
when q−1 >> a, where a is the lattice spacing. It is necessary to use ε(q, ω) when 
spatial variations not too much larger than the lattice constant are important. 

The basic idea is contained in (9.82) and (9.83). For electrical interactions, if 
the actual perturbation of the potential is of the form 

 ∫∫ ⋅⋅′=′ ωωω dd)iexp()iexp(),( qtqvV rq . (9.82) 

Then, the perturbation of the energy is given by 

 ∫∫ ⋅⋅
′

=′ ωω
ωε
ωε dd)iexp()iexp(

),(
),( qt

q
qv rq . (9.83) 

ε(q,ω) is used to discuss (a) plasmons, (b) the ground-state energy of a many-
electron system, (c) screening and Friedel oscillation in charge around a charged 
impurity in a sea of electrons, (d) the Kohn effect (a singularity in the dielectric 
constant that implies a change in phonon frequency.), and (e) even other elemen-
tary energy excitations, provided enough physics is included in ε(q,ω). Some of 
this is elaborated in Sect. 9.5. 

We now discuss two kinds of waves that can occur in plasmas. The first kind 
concerns waves that propagate in a region with only one type of charge carrier, 
and in the second we consider both signs of charge carrier. In both cases we as-
sume overall charge neutrality. Both cases deal with electromagnetic waves 
propagating in a charged media in the direction of a constant magnetic field. Both 
cases only relate somewhat indirectly to dielectric properties through the Coulomb 
interaction. They seem to be worth discussing as an aside. 

9.4.1  Helicons (EE) 

Here we consider electrons as the charge carriers. The helicons are low-frequency 
(much lower than the cyclotron frequency) waves of circularly polarized electro-
magnetic radiation that propagate, with little attenuation, along the direction of the 
external magnetic field. They have been observed in sodium at high field (~ 2.5 T) 
and low temperatures (~ 4 K). The existence of these waves was predicted by 
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P. Aigrain in 1960. Since their frequency depends on the Hall coefficient, they 
have been used to measure it in solids. Their dispersion relation shows that lower 
frequencies have lower velocities. When high-frequency helicons are observed in 
the ionosphere, they are called whistlers (because of the way their signal sounds 
when converted to audio). 

For electrons (charge −e) in E and B fields with drift velocity v, relaxation time 
τ, and effective mass m, we have 
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Assuming B = Bk̂  and low frequencies so ωτ << 1, we can neglect the time deriva-
tives and so 
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where ωc = eB/m is the cyclotron frequency. Letting, σ0 = m/ne2τ, where n is the 
number of charges per unit volume, and the Hall coefficient RH = −1/ne, we can 
write (noting j = −nev, j = v/RH): 
 )(0 yxHx BvERv += σ , (9.86) 

 )(0 xyHy BvERv −= σ . (9.87) 

Neglecting the displacement current, from Maxwell’s equations we have: 
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Assuming ∇·E = 0 (overall neutrality), these give 
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If solutions of the form E = E0exp[i(kx − ωt)] and v = v0exp[i(kx − ωt)] are sought, 
we require: 
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Assuming large conductivity, σ0ωμ0/k2 >> 1, and large B, we find: 
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or the phase velocity is 
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independent of m. Note the group velocity is just twice the phase velocity. Since 
the plasma frequency ωp is (ne2/mε0)1/2, we can write also 
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Typically vp is of the order of sound velocities. 

9.4.2  Alfvén Waves (EE) 

Alfvén waves occur in a material with two kinds of charge carriers (say electrons 
and holes). As for helicon waves, we assume a large magnetic field with electro-
magnetic radiation propagating along the field. Alfvén waves have been observed 
in Bi, a semimetal at 4 K. The basic assumptions and equations are: 

1. ∇ × B = μ0 j, neglecting displacement current. 

2. ∇ × E = −∂B/∂t, Faraday’s law. 

3. ρv·  = j × B, where v is the fluid velocity, and the force per unit volume is domi-
nated by magnetic forces. 

4. E = −(v × B), from the generalized Ohm’s law j/σ = E + v × B with infinite 
conductivity. 

5. B = Bx î  + By ĵ  , where Bx = B0 and is constant while By = B1(t). 
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6. Only the jx, Ex, and vy components need be considered (vy is the velocity of the 
plasma in the y direction and oscillates with time). 

7. v·  = ∂v/∂t, as we neglect (v·∇)v by assuming small hydrodynamic motion. Also 
we assume the density ρ is constant in time. 

Combining (1), (3), and (7) we have 
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By (4) 
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By (2) 
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This is the equation of a wave with velocity 

 ,
0ρμ

BvA =  (9.96) 

the Alfvén velocity. For electrons and holes of equal number density n and effec-
tive masses me and mh, 
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A
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 (9.97) 

Notice that vA = (B2/μ0ρ)1/2 is the velocity in a string of tension B2/μ0 and density ρ. 
In some sense, the media behaves as if the charges and magnetic flux lines move 
together. 

A unified treatment of helicon and Alfvén waves can be found in Elliot and 
Gibson [9.5] and Platzman and Wolff [9.15]. Alfvén waves are also discussed in 
space physics, e.g. in connection with the solar wind. 
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9.5  Free-Electron Screening 

9.5.1  Introduction (B) 

If you place one charge in the midst of other charges, they will redistribute them-
selves in such a way as to “damp out” the long-range effects of the original 
charge. This long-range damping is an aspect of screening. Its origin resides in the 
Coulomb interactions of charges. This phenomenon was originally treated classi-
cally by the Debye–Huckel theory. A semiclassical form is called the Thomas–
Fermi Approximation, which also assumes a free-electron gas. Neither the Debye–
Huckel Theory nor the Thomas–Fermi model treats screening accurately at small 
distances. To do this, it is necessary to use the Lindhard theory. 

We begin with the linearized Thomas–Fermi and Debye–Huckel methods and 
show how to use them to calculate the screening due to a single charged impurity. 
Perhaps the best way to derive this material is through the dielectric function and 
derive the Lindhard expression for it for a free-electron gas. The Lindhard expres-
sion for ε(ω→0, q) for small q then gives us the Thomas–Fermi expression. Gen-
eralization of the dielectric function to band electrons can also be made. The 
Lindhard approach follows in Sect. 9.5.3. 

9.5.2  The Thomas–Fermi and Debye–Huckel Methods (A, EE) 

We assume an electron gas with a uniform background charge (jellium). We as-
sume a point charge of charge Ze (e > 0) is placed in the jellium. This will pro-
duce a potential φ(r), which we assume to be weak and to vary slowly over a dis-
tance of order 1/kF where kF is the wave vector of the electrons whose energy 
equals the Fermi energy. For distances close to the impurity, where the potential is 
neither weak nor slowly varying our results will not be a very good approxima-
tion. Consistent with the slowly varying potential approximation, we assume it is 
valid to think of the electron energy as a function of position. 

 )(
2

22
rk ϕe

m
kE −= = , (9.98) 

where = is Planck’s constant (divided by 2π), k is the wave vector, and m is the 
electronic effective mass. 

In order to exhibit the effects of screening, we need to solve for the potential φ. 
We assume the static dielectric constant is ε and ρ is the charge density. Poisson’s 
equation is 

 
ε
ρϕ −=∇2 , (9.99) 
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where the charge density is 

 neeneZ −+= 0)(rδρ , (9.100) 

where eZδ(r) is the charge density of the added charge. For the spin 1/2 electrons 
obeying Fermi–Dirac statistics, the number density (assuming local spatial equi-
librium) is 
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= 34
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πμβ
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kE
n , (9.101) 

where β = 1/kBT and kB is the Boltzmann constant. When φ = 0, then n = n0, so 
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Note by (9.98) and (9.102), we also have 

 )]([0 rϕμ enn += . (9.103) 

This means the charge density can be written  

 )()( ind rr ρδρ += eZ , (9.104) 

where 

 )]())(([)( 00
ind μϕμρ nene −+−= rr . (9.105) 

We limit ourselves to weak potentials. We can then expand n0 in powers of φ and 
obtain: 
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The Poisson equation then becomes 
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A convenient way to solve this equation is by the use of Fourier transforms. 
The Fourier transform of the potential can be written 

 ∫ ⋅−= rrqrq d)exp()()( iϕϕ , (9.108) 
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with inverse 

 ∫ ⋅= qrqqr d)iexp()(
)2(

1)( 3 ϕ
π

ϕ , (9.109) 

and the Dirac delta function can be represented by 

 ∫ ⋅= qrqr d)iexp(
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1)( 3π
δ . (9.110) 

Taking the Fourier transform of (9.107), we have 
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Defining the screening parameter as 
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we find from (9.111) that 
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Then, using (9.109), we find from (9.113) that 
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Equations (9.112) and (9.114) are the basic equations for screening. 
For the classical nondegenerate case, we have from (9.102) 
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so that by (9.112) 
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we get the classical Debye–Huckel result. For the degenerate case, it is convenient 
to rewrite (9.102) as 

 0 dn ( ) D( E ) f ( E ) Eμ = ∫ , (9.117) 
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so 

 0 d
n fD( E ) E
μ μ

∂ ∂=
∂ ∂∫ , (9.118) 

where D(E) is the density of states per unit volume and f(E) is the Fermi function 
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since 
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at low temperatures when compared with the Fermi temperature; so we have 
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Since the free-electron density of states per unit volume is 
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and the Fermi energy at absolute zero is 
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where n0 = N/V, we find 
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μ
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which by (9.121) and (9.112) gives the linearized Thomas–Fermi approximation. 
If we further use 

 FBTk
2
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we find 
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which looks just like the Debye–Huckel result except T is replaced by the Fermi 
temperature TF. In general, by (9.112), (9.118), (9.119), and (9.122), we have for 
free-electrons, 
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where η = μ/kBT and 
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is the Fermi integral. Typical screening lengths 1/kS for good metals are of order 
1 Å, whereas for typical semiconductors 60 Å is more appropriate. For η << −1, 
F′1/2(η)/F1/2(η) ≈ 1, which corresponds to the classical Debye–Huckel theory, and 
for η >> 1, F′1/2(η)/F1/2(η) = 3/(2η) is the Thomas–Fermi result. 

9.5.3  The Lindhard Theory of Screening (A) 

Here we do a more general discussion that is self-consistent.5 We start with the 
idea of an external potential that determines a set of electronic states. Electronic 
states in turn give rise to a charge density from which a potential can be deter-
mined. We wish to show how we can determine a charge density and a potential in 
a self-consistent way by using the concept of a frequency- and wave-vector-
dependent dielectric constant. 

The specific problem we wish to solve is that of the self-consistent response to 
an applied field. We will assume small applied fields and linear responses. The 
electronic response to the applied field is called screening, and it arises from the 
interaction of the electrons with each other and with the external field. Only 
screening by a free-electron gas will be considered. 

Let a charge ρext be placed in jellium, and let it produce a potential φext (by it-
self). Let φ be the potential caused by the extra charge, the free-electrons, and the 
uniform background charge (i.e. extra charge plus jellium). We also let ρ be the 
corresponding charge density. Then 

 
ε

ρϕ
ext

ext2 −=∇ , (9.129) 

 
ε
ρϕ −=∇2 . (9.130) 

The induced charge density ρind is then defined by 

 extind ρρρ −= . (9.131) 

                                                           
5 This topic is also treated in Ziman JM [25, Chap. 5], and Grosso and Paravicini [55 

p245ff]. 
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We Fourier analyze the equations in both the space and time domains: 
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 )()()( indext ωρωρωρ ,,, qqq += . (9.132c) 

Subtracting (9.132a) from (9.132b) and using (9.132c) yields: 

 )()]()([ indext2 ωρωϕωϕε ,,, qqq =−q . (9.133) 

We have assumed weak field and linear responses, so we write 

 )()()( ωϕωωρ ,,, qqq gind = , (9.134) 

which defines g(q, ω). Thus, (9.133) and (9.134) give this as 

 )()()]()([ ext2 ωϕωωϕωϕε ,,,, qqqq gq =− . (9.135) 

Thus, 
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where 
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ωωε ,, qq −= . (9.137) 

To proceed further, we need to calculate ε(q, ω) directly. In the process of do-
ing this, we will verify the correctness of the linear response assumption. We 
write the Schrödinger equation as 

 kk kE=0H . (9.138) 

We assume an external perturbation of the form 

 )exp())](iexp())(iexp([),( ttVtVtV αωωδ +⋅−++⋅= rqrqr . (9.139) 

The factor exp(αt) has been introduced so that the perturbation vanishes as t = −∞, 
or in other words, as the perturbation is slowly turned on. V is assumed real. Let 

 Vδ+= 0HH . (9.140) 
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We then seek an approximate solution of the time-dependent Schrödinger wave 
equation 

 
t∂

∂= ψψ =iH . (9.141) 

We seek solutions of the form 
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Using (9.138) to cancel two terms in (9.143), we have 

 ∑∑ ′ ′′′ ′′ ′−=′− k kkk kk kk )/iexp()(i)/iexp()( =�== tEtCtEtVCδ . (9.144) 
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Using (9.139), we have 
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We assume a weak perturbation, and we begin in the state k with probability f0(k), 
so we have 

 )()()( )1(
0 tCftC kk,kk k ′′′′′′ += λδ . (9.149) 
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We write out (9.147) to first order for two interesting cases: 
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Integrating, we find, since Ck±q(∞) = 0 
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We write (9.142) as 

 ∑ ′ ′′′ −= k kkk
k ψψ )/iexp()()( =tEtC , (9.154) 

where 
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and Ω is the volume. We put a superscript on ψ because we assume we start in the 
state k. More specifically, (9.153) can be written as 
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Any charge density in jellium is an induced charge density (in equilibrium, jellium 
is uniform and has a net density of zero). Thus, 
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so putting (9.155) into (9.156) and retaining no terms beyond first order, 
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Using 

 ),(),( ωϕω qq eV −= , (9.161) 

and identifying ρind(q, ω) as the coefficient of exp(iq⋅r)exp(iωt), we have 
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By (9.134) we find g(q, ω) and by (9.137), we thus find 
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Finally, a few notes are provided on notation. We can redefine the Fourier com-
ponents so as to change the sign of q. For example, we can say 
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Then defining 
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gives ε(q, ω) in the form given in many textbooks: 
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The limit as α → 0 is tacitly implied in (9.166). In the limit as q becomes small, 
(9.165) gives, as we will show below, the Thomas–Fermi approximation (when ω 
= 0). Two notable effects follow from (9.165), but they are not included in the 
small q limit. An expression for ε(q,0) at large q is readily obtained for our free-
electron case. The result for ω = 0 is 
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where D(EF) is the density of states at the Fermi energy and x = q/2kF with kF be-
ing the wave vector at the Fermi energy. This expression has a singularity at 
q = 2kF, which causes the screening of a charged impurity to have a weakly decay-
ing oscillating term (beyond the Fermi–Thomas potential). This is the origin of 
Friedel oscillations. The Friedel oscillations damp out with distance due to elec-
tron scattering. At finite temperature, the singularity disappears causing the 
Friedel oscillation to damp out. 

Further, since ion–ion interactions are screening by ε(q), the singularity at 
q = 2kF is reflected in the phonon spectrum. Kinks in the phonon spectrum due to 
the singularity in ε(q) are called Kohn anomalies. 

Finally, we look at (9.165) for small q, ω = 0 and α = 0. We find 
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 (9.168) 

and hence comparing to previous work, we get exactly the Thomas–Fermi ap-
proximation. 

Problems 

9.1 Show that E′0 = E0 + P/ε0, where E0 is the electric field between the plates 
before the slab is inserted (9.19). 

9.2 Show that E1 = −P/ε0 (see Fig. 9.2). 

9.3 Show that E2 = P/3ε0 (9.23). 

9.4 Show for cubic crystals that E3 = 0 (chapter notation is used). 

9.5 If we have N permanent free dipoles p per unit volume in an electric field E, 
find an expression for the polarization. At high temperatures show that the 
polarizability (per molecule) is α = p2/3kT. What magnetic situation is this 
analogous to? 
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9.6 Use (9.30) and (9.48) to show (9.49) 
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Find Tc. How likely is this to apply to any real material? 

9.7 Use the trial wave function ψ = ψ100 (1 + pz) (where p is the variational pa-
rameter) for a hydrogen atom (in an external electric field in the z direction) 
to show that we obtain for the polarizability 16πε0a0

3. (ψ100 is the ground-
state wave function of the unperturbed hydrogen atom, a0 is the radius of the 
first Bohr orbit of the hydrogen atom, and the exact polarizability is 
18πε0a0

3.) 

9.8 (a) Given the Gibbs free energy 
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derive an expression for Tc in terms of Psc where G(Psc) = G0 and E = 0. 

(b) Put the expression for Tc in terms without Psc. That is, fill in the details 
of Sect. 9.3.1. 



 

 

10  Optical Properties of Solids 

10.1  Introduction (B) 

The organization of a solid-state course may vary towards its middle or end. Logi-
cal beginnings are fairly easy. One defines the solid-state universe, and this is 
done with a Section on crystal structures and how they are determined. Then one 
introduces the main players, and so there are sections on lattice vibrations, pho-
nons, band structure, and electrons. Following this, one can present topics based 
on the interaction of electrons and phonons and hence discuss, for example, trans-
port. After that come specific materials (semiconductors, magnetic materials, met-
als, and superconductors) and properties (dielectric, optic, defect, surface, etc). 
The problem is that some of these categories overlap so that a clean separation is 
not possible. Optical properties, in particular, seem to spread into many areas, so a 
well-focused segment on the optical properties of solids can be somewhat tricky to 
put together.1 

By optical properties of solids, we mean those properties that relate to the in-
teraction of solids with electromagnetic radiation whose wavelength is in the in-
frared to the ultraviolet. There are several aspects to optical properties of solids 
and looking at the subject in full generality can often lead to complexity, whereas 
treating each part as a separate case often leads to confusion. We will try to keep 
to a middle ground between these, by emphasizing only one topic (absorption) but 
treating it in some detail. Although we will concentrate on absorption, we will 
mention other optical phenomena including emission, reflection, scattering, and 
photoemission of electrons. 

There are several processes involved in absorption, but the main five seem to be: 

(a) Absorption due to electronic transitions between bands that involve wave-
lengths typically less than ten micrometers; 

(b) Absorption by excitons at wavelengths with energies just below the absorption 
edge due to valence–conduction band transitions (in semiconductors); 

(c) Excitation and ionization of impurities that involve wavelengths ranging from 
about one micrometer to one thousand micrometers; 

                                                           
1 A good treatment is Fox [10.12]. 
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(d) Excitation of lattice vibrations (optical phonons) in polar solids for which the 
usual wavelengths are ten to fifty micrometers; 

(e) Free-carrier absorption for frequencies up to the plasma edge. Free-carrier ab-
sorption is particularly important in metals, of course. By gathering data about 
any optical process, we can gain information about the inner workings of the 
solid. 

10.2  Macroscopic Properties (B) 

We start by relating the dielectric properties to optical properties, particularly 
those involving absorption and reflection. The complex dielectric constant, and 
the relation of its two components by the Kronig–Kramers relation, is particularly 
important. The imaginary part relates to the absorption coefficient. We assume the 
total charge density ρtotal = 0, j = σE, and μ = μ0 (no internal magnetic effects, all in 
the usual notation). We assume a wavelength large compared with atomic dimen-
sions but small compared with the dimensions of the sample. We start with Max-
well’s equations and the constitutive relations in SI in the usual notation: 
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One then finds 
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We look for solutions for each Fourier component 
 )](iexp[),( 0 tk ωω −⋅= rkEE , (10.3) 

and keep in mind that ε should be written ε(k, ω). Substituting, one finds 
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Or, since c = 1/(μ0ε0)1/2, 
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For an insulator, σ = 0 so, 
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where n is the index of refraction. It is then natural to define a complex dielectric 
constant εc and a complex index of refraction nc so, 
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Letting 
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squaring both sides and equating real and imaginary parts, we find 
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and 

 ii nnk 2),( =ωε . (10.11) 

Now, assuming the wave propagates in the z direction, if we substitute 
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we have 
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So, since energy in the wave is proportional to |E|2, we have that the absorption 
coefficient is given by 

 
c
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Another readily measured quantity can be related to n and ni. If we apply appro-
priate boundary conditions to a solid surface, we can show as noted below that the 
reflection coefficient for normal incidence is given by 
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This relation follows directly from the Maxwell relations. From Faraday’s law, we 
can show that the tangential component of E is continuous, and from Ampere’s Law 
we can show the tangential component of H is continuous. Further manipulation 
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leads to the desired relation. Let us work this out. For normal incidence from the 
vacuum on a surface at z = 0, the incident and reflected waves can be written as 
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and the refracted wave is given by 
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where nc is the complex index of refraction. Since  
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we can use the loop of Fig. 10.1 to write 
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as 
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where the subscript T means the tangential component of the electric field, and the 
subscript ⊥ means perpendicular to the page of the paper. Taking the limit as 
ε → 0, we obtain 

 021 =− TT EE , (10.22) 

or the tangential component of E is continuous. In a similar way we can use 
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Again taking the limit as ε → 0, we find 

 0)( 21 =− TT HH , (10.25) 
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or that the tangential component of H is also continuous. Continuity of the tangen-
tial component of H requires (using ∇×E = −∂B/∂t, proper constitutive relations, 
and (10.16) and (10.17)) 

 210 EEEnc −= . (10.26) 

Continuity of the tangential component of E requires ((10.16) and (10.17)) 

 210 EEE += . (10.27) 

Adding these two equations gives 
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Subtracting these equations gives 
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Thus, the reflection coefficient is given by 
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Enough has been said to indicate that the theory of the optical properties of solids 
is intimately related to the complex index of refraction of solids. The complex di-
electric constant equals the square of the complex index of refraction. Thus, the 
optical properties of solids are intimately related to the study of the dielectric 
properties of solids, and the measurement of the absorptivity and reflectivity de-
termine n and ni, and hence, εr and εi. 
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ε 1
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Fig. 10.1. Loop used for deriving field boundary conditions (notice this ε is a distance) 
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10.2.1  Kronig–Kramers Relations (A) 

We will give a quantum description of the absorption of radiation, but first it is 
helpful to derive the Kronig–Kramers equations, which give a relation between 
the real and imaginary parts of the dielectric constant. Let ε be a complex function 
of ω that converges in the upper half-plane. We need to define the Cauchy princi-
pal value P with a real for the following equations and diagrams: 

 ⎥⎦
⎤

⎢⎣
⎡

−
+

−
=

− ∫∫∫ ′′′
∞
∞− CC aaa

P
ω

ωωε
ω

ωωε
ω

ωωε d)(d)(
2
1d)( , (10.31) 

as shown by Fig. 10.2. It is assumed that the integral over the large semicircles is 
zero. From complex variables, we know that if C encloses a and if f has no singu-
larity in C, then  
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Using the definition of Cauchy principal value, since we have the integral 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−→= ∫ ∫∫
′ ′′′′ C CC

P
2
1,0 . (10.33) 

Thus, 
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and we have used that ε(ω) on the big circle is zero (actually, to achieve this we 
should use that ε(ω) = [εr(ω) − 1] + iεi(ω), which we will put in explicitly at the 
end). Taking real and imaginary parts we then have, 
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Fig. 10.2. Contours used for Cauchy principal value 
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There are some other ways to write these relationships, 
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But, the second term can be written 
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and ε*(r, t) = ε(r, t), so ε(−q,−ω) = ε*(q, ω). Therefore, 
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We can thus write the real component of the dielectric constant as 
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and similarly the imaginary component can be written 
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 (10.44) 

In summary, the Kronig–Kramers relations can be written, where εr(ω) → 
εr(ω) − 1 should be substituted 

 ∫∫
∞∞

∞− −
=

−
= 0 22

d)(2d)](Im[)(
a

P
a

Pa i
r ω

ωωωε
πω

ωωε
π

ε , (10.45) 

 ∫∫
∞∞

∞− −
−=

−
−= 0 22

d)(2d)](Re[)(
a

Pa
a

Pa r
i ω

ωωε
πω

ωωε
π

ε . (10.46) 



550      10 Optical Properties of Solids 

 

10.3  Absorption of Electromagnetic Radiation–General (B) 

We now give a fairly general discussion of the absorption process by quantum 
mechanics (see also Yu and Cardona  [10.27 Chap. 6] as well as Fox op. cit. Chap. 
3). Although much of the discussion is more general, we have in mind the absorp-
tion due to transitions between the valence and conduction bands of semiconduc-
tors. If −e is the electronic charge, and if we assume the electromagnetic field is 
described by a vector potential A and a scalar potential φ, the Hamiltonian describ-
ing the electron in the field is in SI 
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where V is the potential in the absence of an electromagnetic field; V would be a 
periodic potential if the electron were in a solid. We will use the Coulomb gauge 
to describe the electromagnetic field so φ = 0, ∇⋅A = 0 and the fields are given by 
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The Hamiltonian can then be written 
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The terms quadratic in A will be ignored as they are normally small compared to 
the terms linear in A. Further in the Coulomb gauge, we can write  
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so that the Hamiltonian can be written 
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where the perturbation is 
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We assume the matrix element responsible for electronic transitions will be in the 
form 〈f|H|i〉, where i and f refer to the initial and final electron states and H′ is the 
perturbing Hamiltonian. We assume the vector potential is given by 
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where e⋅k = 0 and a2 is given by 
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where Ē 2̄  is the averaged squared electric field. Then, 
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and for emission 
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10.4  Direct and Indirect Absorption Coefficients (B) 

Let us now look at the absorption coefficient. Using Bloch wave functions (ψk = 
eik·ru(r)), we have 
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The first integral can be written as proportional to 
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by orthogonality and assuming k is approximately zero, where we have also used 
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and Ωc is the volume of a unit cell. The neglect of all terms but the k = 0 terms 
(called the electric dipole approximation) allows a similar description of the emis-
sion term. Following a similar procedure for the second term in (10.56), we obtain 
for absorption, 
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with k = 0 and ki = kf. 
Notice in the electric dipole approximation since ki = kf, we have what are 

called direct optical transitions. If something else such as phonons is involved, di-
rect transitions are not required but the whole discussion must be modified to in-
clude this new physical ingredient. The electric dipole transition probability for 
photon absorption per unit time is 
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The power (per unit volume) lost by the field due to absorption in the medium is 
the transition probability per unit volume P multiplied by the energy of each pho-
ton (where in carrying out the sum over k in (10.60), we will assume we are sum-
ming over k states per unit volume). Carrying out the manipulations below, we fi-
nally find an expression for the absorption coefficient and, hence, the imaginary 
part of the dielectric constant. The power lost equals 
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where I is the energy/volume. But,  
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where α = 2niω/c, and ni = εi/2n. Thus, 
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Using 
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where n = (ε/ε0)1/2 if μ = μ0 and the factor of 2 comes from both magnetic and elec-
tric fields carrying current, we find 
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Using the Kronig–Kramers relations, we can also derive an expression for the real 
part of the dielectric constant. Defining 
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we have (using (10.65), (10.66), and (10.60)) 
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and by (10.45) 
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(where Ec − Ev ≡ =ωcv and δ(ax) = δ(x)/a has been used). Recall that the Σk has to 
be per unit volume and the oscillator strength is defined by 
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Classically, the oscillator strength is the number of oscillators per unit volume 
with frequency ωcv. Thus, the real part of the dielectric constant can be written 
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We want to work this out in a little more detail for direct absorption edges. For 
direct transitions between parabolic valence and conduction bands, effective mass 
concepts enter because one has to deal with both the valence band and conduction 
band. For parabolic bands we write 
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The joint density of states per unit volume (see (10.94)) is then given by 
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and 
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Thus, we obtain that the imaginary part of the dielectric constant is given by 
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Fig. 10.3. (a) Direct transitions and indirect transitions due to band filling; (b) Indirect tran-
sitions, where kph is the phonon wave vector; (c) Vertical transitions dominate indirect tran-
sitions when energy is sufficient to cause them. Emission and absorption refer to phonons 
in all sketches 

From this, one then has an expression for the absorption coefficient (since α = 
ωεi/nc). Thus for direct transitions and parabolic bands, a plot of the square of the 
absorption coefficient as a function of the photon energy should be a straight line, 
at least over a limited frequency. Figure 10.3 illustrates direct and indirect transi-
tions and absorption. Indirect transitions are discussed below.  

The fundamental absorption edge due to the bandgap determines the apparent 
color of semiconductors as seen by transmission. 

We now want to discuss indirect transitions. So far, our analysis has assumed a 
direct bandgap. This means that the k of the initial and final electronic states de-
fining the absorption edge are almost the same (as has been mentioned, the k of 
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the photon causing the absorption is negligible, compared to the Brillouin zone 
width, for visible wavelengths). This is not true for the two most common semi-
conductors Si and Ge. For these semiconductors, the maximum energy of the va-
lence band and the minimum energy of the conduction band do not occur at the 
same k vectors, one has what is called an indirect bandgap semiconductor. For a 
minimum energy transition across the bandgap, something else, typically a pho-
non, must be involved in order to conserve wave vector. The requirement of hav-
ing, for example, a phonon being involved reduces the probability of the event; 
see Fig. 10.3b, c, Fig. 10.4, (10.82), and consider also Fermi’s Golden Rule. 

Even in a direct bandgap semiconductor, processes can cause the fundamental 
absorption edge to shift from direct to indirect, see Fig. 10.3a. For degenerate 
semiconductors, the optical absorption edge may be a function of the carrier den-
sity. In simple models, the location of the Fermi energy in the conduction band 
can be estimated on the free-electron model. When the Fermi energy is above the 
bottom of the conduction band, the k vector of the minimum energy that can cause 
a transition has also shifted from the k of the conduction band minimum. Now di-
rect transitions will originate from deeper states in the valence band, they will be 
stronger than the threshold energy transitions, but of higher energy. 

 
Fig. 10.4. Indirect transitions: hfa = Eg − Ephonon, hfb = Eg + Ephonon, Eg = (hfa + hfb)/2, sketch 

Phonon

Photon

Electron

Electron 

Electron 

 
Fig. 10.5. An indirect process viewed in two steps 

For indirect transitions, we can write the energy and momentum conservation 
conditions as follows: 

 qKkk ±+=′ , (10.78) 
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where K = photon ≅ 0 and, q = phonon (=kph in Fig. 10.3b). Also 

 qkk ωω == ±+=′ )()( EE , (10.79) 

where =ω = photon, and =ωq = phonon. Note: although the photon makes the main 
contribution to the transition energy, the phonon carries the burden of insuring 
that momentum is conserved. Now the Hamiltonian for the process would look 
like 
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One can sketch the indirect process as a two-step process in which the electron ab-
sorbs a photon and changes state then absorbs or emits a phonon. See Fig. 10.5. 

We mention as an aside another topic of considerable interest. We discuss 
briefly optical absorption in an electric field. The interesting feature of this phe-
nomenon is that in an electric field, optical absorption can occur for photon ener-
gies lower than the normal bandgap energies. The increased optical absorption due 
to an electric field can be qualitatively understood by thinking about pictures such 
as in Fig. 10.6. This figure does not present a rigorous concept, but it is helpful. 

Very simply, we can think of the triangular area in the figure as a potential barrier 
that electrons can “tunnel” through. From this point of view, one perhaps believes 
than an electric field can cause electronic transitions from band 2 to band 1 (This is 
called the Zener effect). Obviously, the process of tunneling would be greatly en-
hanced if the electron “picked up some energy from a photon before it began to tun-
nel.” Further details are given by Kane [10.15]. 

It is not hard to see why the Zener effect (or “Zener breakdown”) can be con-
sidered as a tunneling effect. The horizontal line corresponds to the motion of an 
electron (if we describe electrons in terms of wave packets, then we can speak of 
where they are at various times and we can label positions in terms of distances in 
the bands). Actually, we should realize that this horizontal line corresponds to the 
electric field causing the electron to make transitions to higher and higher station-
ary states in the crystal. When the electron reaches the top of the lower band, we 
normally think of the electron as being Bragg reflected. However, we should re-
member what we mean by the energy gap.  

The energy gap, Eg, does not represent an absolutely forbidden gap. It simply 
represents energies corresponding to attenuated, nonpropagating wave functions. 
The attenuation will be of the form e−Kx, where x represents the distance traveled 
(K is real and greater than zero) and K is actually a function of x, but this will be 
ignored here. The electron gains energy from the electric field E as |eEx|. When 
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the electron has traveled x = |Eg/eE|, it has gained sufficient energy to get into the 
bottom of the upper band if it started at the top of the lower band. In order for the 
process to occur, we must require that the electron’s wave function not be too 
strongly attenuated, i.e. Zener breakdown will occur if 1/K >> |Eg/eE|. To see the 
analogy to tunneling, we observe that the electron’s wave function in the triangu-
lar region also behaves as e−Kx from a tunneling viewpoint (also with K a function 
of x), and that the larger we make the electric field, the thinner the area we have to 
tunnel across, so the greater a band-to-band transition. A more quantitative discus-
sion of this effect is obtained by evaluating K not from the picture, but directly 
from the Schrödinger equation. The x dependence on K turns out to be fairly easy 
to handle in the WKB approximation. 

Finally, we can summarize the results for many cases in Table 10.1. Absorption 
coefficients α for various cases (parabolic bands) can be written 
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where γ, β depend on the process as shown in the table. When phonons are in-
volved we need to add both the absorption and emission (±) possibilities to get the 
total absorption coefficient.2 A very clean example of optical absorption is given 
in Fig. 10.7. Good optical absorption experiments on InSb were done in the early 
days by Gobeli and Fan [10.15]. In general, one also needs to take into account the 
effect of temperature. For example, the indirect allowed term should be written 
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where A′ is a constant independent of the temperature, see, e.g., Bube [10.4] and 
Pankove [10.22]. 

                                                           
2 An additional very useful reference is Greenaway and Harbeke [10.16]. See also Yu and 

Cardona [10.27]. 

 

Band 1 

Band 2 

E (electric field)

Eg (energy gap)

 
Fig. 10.6. Qualitative effect of an electric field on the energy bands in a solid 
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Table 10.1. Absorption coefficients 

 γ β 

Direct, allowed 1/2 0   See (10.75) 
Direct, forbidden 3/2 0 
Indirect, allowed 2 ±hfq (phonons) 

Indirect, forbidden 3 ±hfq (phonons) 

γ and β are defined by (10.83). 
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Fig. 10.7. Optical absorption in indium antimonide, InSb at 5 K. The transition is direct be-
cause both conduction and valence band edges are at the center of the Brillouin zone, k = 0. 
Notice the sharp threshold. The dots are measurements and the solid line is (=ω − Eg)1/2. 
(Reprinted with permission from Sapoval B and Hermann C, Physics of Semiconductors, 
Fig. 6.3 p. 154, Copyright 1988 Springer Verlag, New York.) 

10.5  Oscillator Strengths and Sum Rules (A) 

Let us define the oscillator strength by 

 
2

jibf ijij re ⋅= ω . 

We will show this is equivalent to the previous definition with the proper choice 
of b by using commutation relations to cast it in another form. From [x, px] = i= 
we can show 

 xp
m

x =i],[ −=H . (10.85) 
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Also, 
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=i],[H , (10.86) 

therefore 

 jimji ij repe ⋅=⋅ ωi . (10.87) 

Thus we can write the oscillator strength as, 
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which is consistent with how we wrote it before, if b = −2m/= (see (10.69), 
(10.66)). It is also interesting to show that the oscillator strength obeys a sum rule. 
If e = i, then 
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 (10.89) 

Classically, for bound states with no damping, we can derive the dielectric con-
stant. Assume N states with frequency ω0. The result is 
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ωωεε

ε
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+=
m
Ne , (10.90) 

which follows from (9.6) with τ → ∞ and ω0 used for several bound states labeled 
with i. Note that it is just the same as the quantum result (10.70) provided the os-
cillator strength from one oscillator is one. From this we have the index of refrac-
tion, and it is given by n2 = ε/ε0, since ε is real with τ → ∞. When ε/ε0 as the pre-
ceding, the resulting equation is often called Sellmeier’s equation. 

10.6  Critical Points and Joint Density of States (A) 

Optical absorption spectra give many details about the band structure. This can be 
explained by the Van Hove singularities, which appear in the joint density of 
states as mentioned below. In the integral for the imaginary part of the dielectric 
constant, we had an expression of the form (10.67): 

 ∫ −∝ )(
)2(

d2 2
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2 vcvci EEM δ
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ε k . (10.91) 
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A property of delta functions can be written as 

 ∑∫
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where xp are the zeros of f(x). From which we conclude that the imaginary part of 
the dielectric constant can be written as 
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where dS is a surface of constant =ω = Ec − Ev. The joint density of states is de-
fined as (Yu and Cardona [10.27 p251]) 
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and typically the matrix element Mvc is a slowly varying function compared with 
the joint density of states. Now the joint density of states is a strongly varying 
function of k where the denominator is zero, i.e. where 

 0)( =− vc EEk∇ . (10.95) 

Both valence and conduction band energies must be periodic functions in recip-
rocal space and so must their difference and from this it follows that there must be 
a point for which the denominator vanishes (smooth periodic functions have ana-
lytic maxima and minima). These critical points lead to singularities in the density 
of states, the Van Hove singularities. At very highly symmetrical points in the 
Brillouin zone, we can have critical points due to the gradient of both conduction 
and valence energies vanishing, at other critical points only the gradient of the dif-
ference vanishes. Critical points are defined by the band structure, and in turn, 
they help determine the absorption coefficient. Reversing the process, studying the 
absorption coefficient gives information on the band structure. 

10.7  Exciton Absorption (A) 

In semiconductors, one may detect absorption for energies just below the energy 
gap where one might have initially expected transparency. This could be due to 
absorption by bound electron–hole pairs or excitons. The binding energy of the 
excitons lowers their absorption below the bandgap energy. It is interesting that 
one can only think of bound electron–hole pairs if electron and holes move with 
the same group velocity, in other words the energy gradients of valence and elec-
tronic energies need to be the same. That is, excitons form at the critical points of 
the joint density of states. 
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One generally talks of two kinds of excitons, the Frenkel excitons and Wannier 
excitons. The Frenkel excitons are tightly bound and can be described by a variant 
of tight binding theory. Another way to view Frenkel excitons is as a propagating 
excited state of a single atom. Thus, we describe it with the Hamiltonian where the 
states are the localized excited states of each atom. For the Frenkel case let 

 jiVii ji iji ∑∑ += ,εH , (10.96) 

where with one-dimensional nearest-neighbor hopping 

 11 −+ += j
i

j
iij VVV δδ . (10.97) 

This can be diagonalized by the substitution: 

 ∑= j jjkak )iexp( , (10.98) 

which leads to the energy eigenvalues 

 kk kε=H , (10.99) 

where, εk = ε + 2V cos(ka). These Frenkel types of excitons are found in the alkali 
halides. 

In semiconductors, the important types of excitons are the Wannier excitons, 
which have size much larger than typical interatomic dimensions. The Wannier 
excitons can be analyzed much as a hydrogen atom with reduced mass defined by 
the electron and hole masses and with the binding Coulomb potential reduced by 
the appropriate dielectric constant. That is, the energy eigenvalues are 
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where 
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μ

. (10.101) 

Optical absorption in GaAs is shown in Fig. 10.8. 

10.8  Imperfections (B, MS, MET) 

We will only give a brief discussion here. Reference should be made also to the 
chapters on semiconductors and defects. Imperfections may produce resonant en-
ergy levels in the bands or energy levels that are in the bandgap. Donors and ac-
ceptors in semiconductors produce energy levels that may be detected by optical 
absorption when the thermal energy is much less than their ionization energy. 
Similarly, deep defects produced in a variety of ways may produce energy levels 
in the gap, often near the center. Deep defects tend to be very localized in space 
and therefore to contain a large range of k vectors. Thus, it is possible to have 
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a direct transition from a deep defect to a large range of k values in the conduction 
band, for example. A shallow level, on the other hand, is well spread out in space 
and therefore restricted in k value and so direct transitions from it to a band go to 
quite a restricted range of values. Color centers in alkali halides are examples of 
other kinds of optically important defects. 

Suppose we have some generic defect with energy level in the gap. One could 
have absorption due to transitions from the valence or conduction band to the 
level. There could even be absorption between levels due to the defect or different 
defects. Several types of optical processes are suggested in Fig. 10.9. 

 

Donor 
Level 

Acceptor 
Level 

Deep 
Defect 

Conduction Band 

Valence Band

Absorption Emission 

 
Fig. 10.9. Some typical radiative transitions in semiconductors. Nonradiative (Auger) tran-
sitions are also possible 
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Fig. 10.8. Absorption coefficient near the band edge of GaAs. Note the exciton absorption 
level below the bandgap Eg [Reprinted with permission from Sturge MD, Phys Rev 127, 

771 (1962). Copyright 1962 by the American Physical Society.] 
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10.9  Optical Properties of Metals (B, EE, MS) 

Free-carrier absorption can be viewed as intraband absorption–the electron ab-
sorbing the photon remains in the same band.3 Free-carrier absorption is obviously 
important for metals, and is often of importance for semiconductors. The electron 
is accelerated by the photon and gains energy, but since the wave vector of the 
photon is negligible, something else such as a phonon needs to be involved. For 
many purposes, the process can be viewed classically by Drude theory with a re-
laxation time of τ ≡ 1/ω0. This relaxation time defines a frictional force constant 
m*/τ, where the viscous like frictional force is proportional to the velocity. 

We will use classical theory here, but it is worthwhile to make a few com-
ments. It is common to deal with a semiclassical picture of radiation. There we 
treat the radiation classically, but the underlying electronic systems that absorb 
and emit the radiation we treat quantum mechanically. Radiation can be treated 
classically when it is intense enough to have many photons in each mode. Free-
electronic systems can be treated classically when their de Broglie wavelengths 
are small compared to the average interparticle separations. 

The de Broglie wavelength can be estimated from the momentum as estimated 
from equipartition. In practice, this means that for temperatures that are not too 
low and densities that are not too high, then classical mechanics should be valid. 
Bound systems are more complicated, but in general, classical mechanics works at 
higher quantum numbers (higher bound-state energies). In any case, classical and 
quantum results often overlap in validity well beyond where one might naively 
expect. 

The classical theory can be written, assuming a sinusoidal electric field 
E = E0exp(−iωt) (note these are for free-electrons (e > 0) with damping). We also 
generalize by using an effective mass m* rather than m: 

 )iexp(0 ωτ
τ

−−=+
∗

∗ eExmxm ��� . (10.102) 

Note this is just (9.1) with ω0 = 0, as appropriate for free charges. Seeking a 
steady-state solution of the form x = x0exp(−iωτ), we find 
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which is (9.2) with ω0 = 0. Thus, the polarization is given by 
 ENexP L )( εε −=−= , (10.104) 

where εL is the contribution to the dielectric constant of everything except the free 
carriers (generalizing (9.3)). The frequency-dependent dielectric constant is 
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3 See also, e.g., Ziman [25, Chap. 8] and Born and Wolf [10.1]. 
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where N is the number of electrons per unit volume. From the real and imaginary 
parts of ε we find, similar to Sect. 9.2, 

 ∗=
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and 
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It is convenient to write this in terms of the plasma frequency 
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and so, 
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From here onwards for simplicity we assume εL ≅ ε0. We have three important ω. 
The plasma frequency ωp is proportional to the free-carrier concentration, ω0 
measures the electron–phonon coupling and ω is the frequency of light. 

We now want to show what these equations predict in three different frequency 
regions. 

(i) ωτ << 1, the low-frequency region. We obtain by (10.109) with ω0 = 1/τ 

 2222 1 τω pinn −=− , (10.111) 

which is small, and by (10.110) 
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which is large. Here the imaginary part (of the dielectric constant) is much greater 
than the real part and we have high reflectivity. In this approximation 

 1)2(122 ≅−=− ii nnnn ωτ , (10.113) 

but neither n nor ni are small, so n ≅ ni, and n2 ≅ σ0/2ωε0. The reflectivity then becomes 
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This is the Hagen–Rubens relation [10.17]. 
(ii) 1/τ << ω << ωp, the relaxation region. The basic relations become 
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inn −=− , (10.115) 

which is large and negative, and 
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which is smaller than n2 − ni
2. However, this predicts the metal is still strongly re-

flecting as we now show. Since ωτ >> 1 and ωp/ω >> 1, we see 
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Therefore, 

 nni >> , (10.119) 
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and 
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Since ωpτ >> 1, the metal is still strongly reflecting. 
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(iii) ωp << ω or ωp/ω << 1. This is the ultraviolet region where we also assume 
ω >> ω0. 

 1)( 22 ≅− inn , (10.125) 

so 
 1))(( =+− ii nnnn . (10.126) 

2nni = (ωp/ω)2(1/ωτ) is very small. Both n and ni are not very small, therefore ni is 
very small. Therefore, 
 1 , ≅>> nnn i . (10.127) 

Therefore, 
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So, 
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is very small. There is little reflectance since this is the ultraviolet transparency 
region. We summarize our results in Fig. 10.10. See also Seitz [82, p 639], Ziman 
[25, 1st edn, p 240], and Fox [10.12]. 

 
Fig. 10.10. Sketch of absorption and reflection in metals 
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The plasma edge, or the region around the plasma frequency deserves a little 
more attention. Using Maxwell’s equations we have 

 0)(0, ==⋅=⋅−=× ρ
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∂ BEBE ∇∇∇
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, (10.130) 

and 
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and we will include any charge motion in P. Therefore, 
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Note here ε→ε/ε0. Assume E = E0exp(−iωt)exp(ik⋅r). We obtain, as shown below 
((10.142), (10.143)), for the wave vector 
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For a free-electron in an electric field we have already derived the plasma fre-
quency in Sect. 9.4. We give here an alternative simple derivation and bring out a 
few new features, 
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If the positive ion core background has a dielectric constant of ε(∞) that is about 
constant, then (10.141) is modified 
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where 
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When the frequency is less than the plasma frequency the squared wave vector is 
negative (10.133) and gives us total reflection. Above the plasma frequency, the 
wave vector squared is positive and the material is transparent. That is, simple met-
als should reflect in the visible and be transparent in the ultraviolet, as we have al-
ready seen. 

It is also good to remember that at the plasma frequency the electrons undergo 
low-frequency longitudinal oscillations. See Sect. 9.4. Specifically, note that set-
ting ε(ω) = 0 defines a frequency ω = ωL corresponding to longitudinal plasma os-
cillations. 
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Here we have neglected the dielectric constant of the positive ion cores. 
The plasma frequency is also a free longitudinal oscillation. If we have a doped 

semiconductor with the plasma frequency less than the bandgap over Planck’s 
constant, one can detect the plasma edge, as illustrated in Fig. 10.11. See also Fox 
op cit, p156. Hence, we can determine the electron concentration. 

 
Fig. 10.11. Reflectivity of doped semiconductor, sketch 
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10.10  Lattice Absorption, Restrahlen, and Polaritons (B) 

10.10.1  General Results (A) 

Polar solids carry lattice polarization waves and hence can interact with electro-
magnetic waves (only transverse optical phonons couple to electromagnetic waves 
by selection rules and conservation laws). The dispersion relations for photons and 
the phonons of the polarization waves can cross. When these dispersion relations 
cross, the resulting quanta turn out to be neither photons nor phonons but mixtures 
called polaritons. One way to view this is shown in Fig. 10.12. We now discuss 
this process in more detail. We start by considering lattice vibrations in a polar 
solid. We will later add in a coupling with electromagnetic waves. The displace-
ment of the tth ion in the lth cell for the jth component, satisfies 
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and U describes the potential of interaction of the ions. If vtl is a constant, 

 ∑ ′ ′ =h ht ttG 0)( . (10.147) 

 
Fig. 10.12. Polaritons as mixtures of photons and transverse phonons. The mathematics of 
this model is developed in the text 
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We will add an electromagnetic wave that couples to the system through the 
force term. 

 )](iexp[0 tEet ω−⋅ lq , (10.148) 

where et is the charge of the tth ion in the cell. We seek solutions of the form 

 )()iexp()( , tvtv sls qlq ⋅= , (10.149) 

(now s labels ions) with q = K (dropping the vector notation of q, h, and l for sim-
plicity from here on) and t is the time. Defining 

 ∑ ′′ = h ssss KhhGKG )iexp()()( , (10.150) 

we have (for one component in field direction) 
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Note that 
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Using the above we find 
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Assuming e1 = |e| and e1 = −|e| (to build in the polarity of the ions), the following 
equations can be written (where long wavelengths, K ≅ 0, and one component of 
ion location is assumed) 
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where 
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If we assume that 
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where h′ = −1, 0, 1 (does not range beyond nearest neighbors), then 
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Similarly, 
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and 
 )()( 2122 hGhG −= . (10.160) 

Therefore we can write 
 )iexp()( 0121111 teEvvGvM ω−+−=�� , (10.161) 

and 
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We now apply this to a dielectric where 
 EP+= 0εε , (10.163) 

and 
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with Ni = the number of ions/vol of type i and αi is the polarizability. For cubic 
crystals as derived in the chapter on dielectrics, 
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Let4 
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For the diatomic case, define 
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4  Grosso and Paravicini [55 p342] also introduce B as a parameter and refer to its effects 

as a “renormalization” due to local field effects. 
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Then the static dielectric constant is given by 
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while for high frequency 
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We return to the equations of motion of the ions in the electric field—which in 
fact is a local electric field, and it should be so written. After a little manipulation 
we can write 
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Using 
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we can write 

 loc2121 )()( eEvvGvv =−+− ����μ . (10.178) 

We first discuss this for transverse optical phonons.5 Here, the polarization is per-
pendicular to the direction of travel, so 
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in the absence of an external field. Now the polarization can be written as 
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5 A nice picture of transverse and longitudinal waves is given by Cochran [10.7]. 



10.10 Lattice Absorption, Restrahlen, and Polaritons (B)      573 

 

so the local field becomes 
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The equation of motion can be written 
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Seeking sinusoidal solutions of the form v = v0exp(−iωTt) of the same frequency 
dependence as the local field, then 
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We suppose αion is the static polarizability so that 
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form the equations of motion. So, 
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For the longitudinal case with q || P we have 
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So, 
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Then, we obtain the equation of motion, 
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so 
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By the same reasoning as before, we obtain 
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Thus, we have shown that, in general 
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and 
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Therefore, using (10.173), (10.174), (10.194), and (10.195) we find 
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This is the Lyddane–Sachs–Teller Relation, which was mentioned in Sect. 9.3.2, 
and also derived in Section 4.3.3 (see 4.79) as an aside in the development of po-
larons. Compare also Kittel [59, 3rd edn, 1966, p393ff] who gives a table showing 
experimental confirmation of the LST relation. The original paper is Lyddane et al 
[10.20]. An equivalent derivation is given by Born and Huang [10.2 p80ff]. 

For intermediate frequencies ωT < ω < ωL, 
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We need an expression for Bi(ω). With an external field since only transverse 
phonons are strongly interacting 
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Seeking a solution of the form v = v0exp(−iωt) we get 
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or 
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Using the local field relations, we have 

 
loc

0 0 el

2 2
0 el

1
3 3 1
1 1 ,

3 1 T

P NevE E E
B

Ne eEE
B ( )

ε ε

ε μ ω ω

= + = +
−

= +
− −

 (10.205) 

so, 
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where, 

 
))(1(

)0(
22

el ωωμ −−
=

T

i

B
BGF . (10.207) 

Or, 

 
F

FBNB ii +
−==

1
)1()(

3
1)( el

0
ωα

ε
ω , (10.208) 



576      10 Optical Properties of Solids 

 

or 
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Defining 
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after some algebra we also find 
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10.10.2  Summary of the Properties of ε(q, ω) (B) 

Since n = ε1/2 with σ = 0 (see (10.8)), if ε < 0, one gets high reflectivity (by (10.15) 
with nc pure imaginary). Note if 
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then ε(ω) < 0, since by (10.210), (10.211), and (10.212) we can also write 
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and one has high reflectivity (R → 1). Thus, one expects a whole band of forbid-
den nonpropagating electromagnetic waves. ωT is called the Restrahl frequency 
and the forbidden gap extends from ωT to ωL. We only get Restrahl absorption in 
semiconductors that show ionic character; it will not happen in Ge and Si. We 
give some typical values in Table 10.2. See also Born and Huang [2, p118]. 
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Table 10.2. Selected lattice frequencies and dielectric constants 

Crystal ωT (cm–1) ωL (cm–1) ε(0) (cgs) ε(∞) (cgs) 

InSb  185 197  17.88  15.68 
GaAs  269 292  12.9  10.9 
NaCl  164 264  5.9  2.25 
KBr  113 165  4.9  2.33 
LiF  306 659  8.8  1.92 

AgBr  79 138  13.1  4.6 

From Anderson HL (ed), A Physicists Desk Reference 2nd edn, American In-
stitute of Physics, Article 20: Frederikse HPR, Table 20.02.B.1 p.312, 1989,
with permission of Springer-Verlag. Original data from Mitra SS, Handbook 
on Semiconductors, Vol 1, Paul W (ed), North-Holland, Amsterdam, 1982, 
and from Handbook of Optical Constants of Solids, Palik ED (ed), Academic 
Press, Orlando, FL, 1985. 

10.10.3  Summary of Absorption Processes: General Equations (B) 

Much of what we have discussed can be summed up in Fig. 10.13. Summary ex-
pressions for the dielectric constants are given in (10.67) and (10.68). See also Yu 
and Cardona [10.27, p. 251], and Cohen [10.8] as well as Cohen and Chelikowsky 
[10.9, p31]. 

 
Fig. 10.13. Sketch of absorption coefficient of a typical semiconductor such as GaAs. 
Adapted from Elliott and Gibson [10.11, p. 208] 



578      10 Optical Properties of Solids 

 

10.11  Optical Emission, Optical Scattering 
and Photoemission (B) 

10.11.1  Emission (B) 

We will only tread lightly on these topics, but they are important to mention. For 
example, photoemission (the ejection of electrons from the solid due to photons) 
can often give information that is not readily available otherwise, and it may be 
easier to measure than absorption. Photoemission can be used to study electron 
structure. Two important kinds are XPS – X-ray photoemission from solids, and 
UPS ultraviolet photoemission. Both can be compared directly with the valence-
band density of states. See Table 10.3. A related discussion is given in Sect. 12.2. 

Table 10.3. Some optical experiments on solids 

High-energy re-
flectivity 

The low-energy range below about 10 eV is good for investigating 
transitions between valence and conduction bands. The use of syn-
chrotron radiation allows one to consider much higher energies 
that can be used to probe transitions between the conduction-band 
and core states.  Since core levels tend to be well defined, such 
measurements provide direct data about conduction band states in-
cluding critical point structure. The penetration depth is large com-
pared to the depth of surface irregularities and thus this measure-
ment is not particularly sensitive to surface properties. Only 
relative energy values are measured. 

Modulation 
spectroscopy 

This involves measuring derivatives of the dielectric function to 
eliminate background and enhance critical point structure. The 
modulation can be of the wavelength, temperature, stress, etc. See 
Cohen and Chelikowsky p. 52. 

Photoemission Can provide absolute energies, not just relative ones. Can use to 
study both surface and bulk states. Use of synchrotron radiation is 
extremely helpful here as it provides a continuous (from infrared to 
X-ray) and intense bombarding spectrum. 

XPS and UPS X-ray photoemission spectroscopy and ultraviolet photoemission 
spectroscopy. Both can now use synchrotron radiation as a source. 
In both cases, one measures the intensity of emitted electrons ver-
sus their energy. At low energy this can provide good checks on 
band-structure calculations. 

ARPES Angle-resolved photoemission spectroscopy. This uses the wave-
vector conservation rule for wave vectors parallel to the surface. 
Provided certain other bits of information are available (see Cohen 
and Chelikowsky, p.68), information about the band structure can 
be obtained (see also Sect. 3.2.2). 

Reference: Cohen and Chelikowsky [10.8]. See also Brown [10.3]. 
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Also, the topic of emission is important because it involves applications—
fluorescent lighting and television are obviously important and based on emission 
not on absorption. There are perhaps four principal aspects of optical emission. 
First, there are many types of transitions allowed. A second aspect is the excita-
tion mechanism that positions the electron for emission. Third are the mechanisms 
that delay emission and give rise to luminescence. Finally, there are those combi-
nations of mechanisms that produce laser action. Luminescence is often defined as 
light emission that is not due just to the temperature of the emitting body (that is, 
it is not black-body emission). There are several different kinds of luminescence 
depending on the source of the energy. For example, one uses the term photolu-
minescent if the energy comes from IR, visible, or UV light. Although there seems 
to be no universal agreement on the terms phosphorescence and fluorescence, 
phosphorescence is used for delayed light emission and fluorescence sometimes 
just means the light emitted due to excitation. Metals have high absorption at most 
optical frequencies, and so when we deal with photoemission, we normally deal 
with semiconductors and insulators. 

10.11.2  Einstein A and B Coefficients (B, EE, MS) 

We give now a brief discussion of emission as it pertains to the lasers and masers. 
The MASER (microwave amplification by stimulated emission of radiation) was 
developed by C. H. Townes in 1951, also independently by N. G. Basov and A. 
M. Prokhorov at about the same time). The first working LASER (light amplifica-
tion by stimulated emission of radiation) was achieved by T. H. Maiman in 1960 
using a ruby crystal. Ruby is sapphire (Al2O3) with a small amount of chromium 
impurities. 

The Einstein A and B coefficients are easiest to discuss in terms of discrete lev-
els, and exhibit a main idea of lasers. See Fig. 10.14. For a complete discussion of 
how lasers produce intense, coherent, and monochromatic beams of light see the 
references on applied physics [32–35]. Let the spontaneous emission and the in-
duced transition rates be defined as follows: 

Spontaneous emission n → m Anm 

Induced emission n → m Bnm 
Induced absorption m → n Bmn 

From the Planck distribution we have for the density of photons 
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Thus, generalizing to band-to-band transitions, we can write the generation rate as 

 )()1( mnnnmmmnmn fNfNBG νρ−= , (10.215) 
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where N represents the number and f is the Fermi function. Also, we can write the 
recombination rate as 

 )1()()1( mmnnnmmnmmnnnmnm fNfNAfNfNBR −+−= νρ . (10.216) 

In steady state, Gmn = Rnm. From the Fermi function we can show 
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Thus, since Bnm = Bmn, we have from (10.215) and (10.216) 
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and 
 mnmn hEE ν=− , (10.219) 

we find for the ratio between the A and B coefficients, 
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10.11.3  Raman and Brillouin Scattering (B, MS) 

The laser has facilitated many optical experiments such as, for example, Raman 
scattering. We now discuss briefly Raman and Brillouin scattering. One refers to 
the inelastic scattering of light by phonons as Raman scattering if optical phonons 
are involved, and Brillouin scattering if acoustic phonons are. If phonons are emit-
ted one speaks of the Stokes line and if absorbed as the anti-Stokes line. Note that 
these processes are two-photon processes (there is one photon in and one out). 
Raman and Brillouin scattering are made possible by the strain dependence of the 
electronic polarization. The relevant conservation equations can be written: 

 Kkk ωωω ±= ′ , (10.221) 

 Kkk ±′= , (10.222) 

 
Fig. 10.14. The Einstein A and B coefficients 
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where ω and k refer to photons and ωK and K to phonons. Since the value of the 
wave vector of photons is very small, the phonon wave vector can be at most 
twice that of the photon, and hence is very small compared to the Brillouin zone 
width. Hence, the energy of the optical phonons is very nearly constant at the op-
tical phonon energy of zero wave vectors. 

Brillouin scattering from longitudinal acoustic waves can be viewed as scatter-
ing from a density grating that moves at the speed of sound. Raman scattering can 
be used to determine the frequency of the zone-center phonon modes. Since the 
processes depend on phonons, a temperature dependence of the relative intensity 
of the Stokes and anti-Stokes lines can be predicted. 

A simple idea as to the temperature dependence of the Stokes and the anti- 
Stokes lines is as follows [23, p. 323]. (For a more complete analysis see [10.2, 
p272]. See also Fox op. cit. p222.) 

Stokes: 11
2† +∝+∝ KKkK nnanIntensity , (10.223) 

Anti-Stokes: KKkK nnanIntensity ∝−∝
2

1  (10.224) 
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A diagram of Raman/Brillouin scattering involving absorption of a phonon 
(anti-Stokes) is shown in Fig. 10.15. As we have shown above, the intensity of the 
anti-Stokes line goes to zero at absolute zero, simply because there are no phonons 
available to absorb. 

E, K phonon

=ω, k photon
=ω′, k′ photon 

 
Fig. 10.15. Raman and Brillouin scattering. The diagram shows absorption. Acoustic pho-
nons are involved for Brillouin scattering, and optical phonons for Raman 

An expression for the frequency shift of both of these processes is now given. 
For absorption 

 kKk ′=+ , (10.226) 

and 

 kKk ′=+ ωωω . (10.227) 
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Assuming the wavelength of the phonon is much greater than the wavelength of 
light, we have k ≅ k′. If we let θ be the angle between k and k′, then it is easy to 
see that 
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The shift in frequency of the scattered light is ωK. For Brillouin scattering, with V 
≅ ωK/K being the phonon velocity and n being the index of refraction, one finds 
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and thus n can be determined. When phonons are absorbed, the photons are 
shifted up in frequency by ωK, and when phonons are emitted, they are shifted 
down in frequency by this amount. 

10.12  Magneto-Optic Effects: The Faraday Effect 
(B, EE, MS) 

The rotation of the plane of polarization of plane-polarized light, which is propa-
gating along an external magnetic field, is called the Faraday effect.6 Substances 
for which this occurs naturally without an applied field are said to be optically ac-
tive. One way of understanding this effect is to resolve the plane-polarized light 
into counterrotating circularly polarized components. Each component will have 
(see below) a different index of refraction and so propagates at a different speed, 
thus when they are recombined, the plane of polarization has been rotated. The 
two components behave differently because they interact with electrons via the 
two rotating electric fields. The magnetic field in effect causes a different radial 
force depending on the direction of rotation, and this modifies the effective spring 
constant. Both free and bound carriers can contribute to this effect. A major use of 
the Faraday effect is as an isolator that allows electromagnetic waves to propagate 
only in one direction. If the wave is polarized, and then rotated by 45 degrees by 
the Faraday rotator, any wave reflected back through the rotator will be rotated 
another 45 degrees in the same direction and hence be at 90 degrees to the polar-
izer and so cannot travel that way. 

A simple classical picture of the effect works fairly well. We assume an elec-
tron bound by an isotropic Hooke’s law spring in an electric and a magnetic field. 
By Newton’s second law (e > 0): 

 )( BrErr ×+−−= ��� ekm . (10.230) 

                                                           
6 A comprehensive treatment has been given by Caldwell [10.5]. 
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Defining ω0
2 = k/m (a different use of ω0 from that in (10.108)!), letting B = Bk, 

and assuming the electric field is in the (x,y)-plane, if we write out the x and 
y components of the above equation we have 

 xE
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0ω��� , (10.231) 
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We define w± = x ± iy and E± = Ex ± iEy. Note that the real and imaginary parts of 
E+ correspond to “right-hand waves” (thumb along z) and the real and imaginary 
parts of E− correspond to “left-hand waves”. 

We assume for the two circularly polarized components, 
 )](iexp[0 zktEE ±± −±= ω , (10.233) 

which when added together gives a plane-polarized beam along x at z =0. We seek 
steady-state solutions for which 
 )](iexp[ zktw ±± −±= ω . (10.234) 

Substituting we find 
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The polarization P is given by 
 rP Ne−= , (10.236) 
where N is the number of electrons/volume: 
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It is convenient to write this in terms of two special frequencies. The cyclotron 
frequency is 

 
m
eB

c =ω , (10.238) 

and the plasma frequency is 
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Thus (10.237) can be written 
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As usual we write 
 ±±± += PED 0ε , (10.241) 



584      10 Optical Properties of Solids 

 

or 
 ±±± = ED ε . (10.242) 

Using (10.240), (10.241), (10.242), and 
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we find 
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The total angle that the polarization turns through is 
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where in a distance l (and with period of rotation Τ) 
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Thus, 
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So, combining (10.247) and (10.249) 
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For free carriers ω0 = 0, we find if ωc << ω, 
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Note a positive B (along z) with propagation along z will give a negative Verdet 
constant (the proportionality between the angle and the product of the field and path 
length) and a clockwise Θ when it is viewed along (i.e. in the direction of) −z. 
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Problems 

10.1 In a short paragraph explain what photoconductivity is, and describe any 
photoconductivity experiment. 

10.2 Describe, very briefly, the following magneto-optical effects: (a) Zeeman ef-
fect, (b) inverse Zeeman effect, (c) Voigt effect, (d) Cotton–Mouton effect, 
(e) Faraday effect, (f) Kerr magneto-optic effect. 

Describe briefly the following electro-optic effects: (g) Stark effect, (h) in-
verse Stark effect, (i) electric double refraction, (j) Kerr electro-optic effect. 

Descriptions of these effects can be found in any good optics text. 

10.3 Given a plane wave E = E0exp[i(k·r − ωt)] normally incident on a surface, 
detail the assumptions, conditions and steps to show ncE0 = E1 − E2, (cf. 
(10.26)). 

10.4 (a) From [x, px] = i=, show that 

 [ ] pere ⋅⋅ ˆiˆ,
m

H =−= , 

(b) For ê  = î , show the oscillator strength fij obeys the sum rule ∑jfij = 1. 

10.5 For intermediate frequencies ωT < ω < ωL, given (by (10.198)) 

 
)1)]((1[

)(3)()(

elionel

ion

00 BBB
B

−−−
=∞−

ω
ω

ε
ε

ε
ωε , 

and the equation of motion (by (10.199)) 
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derive the equation 
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where c is a defined as constant within the derivation. In this process, show 
intermediate derivations for the following equations defining constants as 
necessary: 
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10.6 This problem fills in the details of Sect. 10.11.2. 
(a) Describe the factors that make up the generation rate 

 )()1( mnnnmmmnmn fNfNBG νρ−= . 

(b) Show from the Fermi function that 
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(c) Starting from Gmn = Rnm, show that 
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11  Defects in Solids 

11.1  Summary About Important Defects (B) 

A defect in a solid is any deviation from periodicity in the solid. All solids have 
defects, but for some applications, they can be neglected, while for others, the 
defects can be very important. By now, simple defects are well understood, but for 
more complex defects, a considerable amount of fundamental work remains to be 
accomplished for a thorough understanding. 

Some discussion of defects has already been made. In Chap. 2, the effects of 
defects on the phonon spectrum of a one-dimensional lattice were discussed, 
whereas in Chap. 3 the effects of defects on the electronic states in a one-
dimensional lattice were considered. In the semiconductor chapter, donor and 
acceptor states were used, but some details were postponed until this chapter. 

There is only one way to be perfect, but there are numerous ways to be 
imperfect. Thus, we should not be surprised that there are many kinds of defects. 
The mere fact that no crystal is infinite is enough to introduce surface defects, 
which could be electronic or vibrational. Electronic surface states are classified as 
Tamm states (if they are due to a different potential in the last unit cell at the 
surface edge with atoms far apart) or Shockley states (the cells remain perfectly 
repetitive right up to the edge, but with atoms close enough so as to have band 
crossing1). Whether or not Tamm and Shockley states should be distinguished has 
been the subject of debate that we do not wish to enter into here. In any case, the 
atoms on the surface are not in the same environment as interior atoms, and so, 
their contribution to the properties of the solid must be different. The surface also 
acts to scatter both electrons and phonons. The properties of surfaces are of 
considerable practical importance. All input and output to solids goes through the 
surfaces. Thermionic and cold field emission from surfaces is discussed in Sects. 
11.7 and 11.8. Surface reconstruction is discussed in Chap. 12. Another important 
application of surface physics is to better understand corrosion. 

Besides surfaces, we briefly review other ways crystals can have defects, 
starting with point defects (see Crawford and Slifkin [11.7]). When a crystal is 
grown, it is not likely to be pure. Foreign impurity atoms will be present, leading 
to substitutional or interstitial defects (see Fig. 11.1). Interstitial atoms can 
originate from atoms of the crystal as well as foreign atoms. These may be caused 
by thermal effects (see below) or may be introduced artificially by radiation 
damage. Radiation damage (or thermal effects) may also cause vacancies. Also, 
                                                           
1 See, e.g., Davison and Steslicka [11.8]. 
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when a crystal is composed of more than one element, these elements may not be 
exactly in their proper chemical proportions. The stoichiometric derivations can 
result in vacancies as well as antisite defects (an atom of type A occupying a site 
normally occupied by an atom of type B in an AB compound material). 

Vacancies are always present in any real crystal. Two sorts of point defects 
involving vacancies are so common that they are given names. These are the 
Schottky and Frenkel defects, shown for an ionic crystal in Fig. 11.2. Defects such 
as Schottky and Frenkel defects are always present in any real crystal at a finite 
temperature in equilibrium. The argument is simple. Suppose we assume that the 
free energy F = U − TS has a minimum in equilibrium. The defects will increase 
U, but they cause disorder, so they also cause an increase in the entropy S. At high 
enough temperatures, the increase in U can be more than compensated by the 
decrease in −TS. Thus, the stable situation is the situation with defects. 

Mass transport is largely possible because of defects. Vacancies can be quite 
important in controlling diffusion (discussed later in Sect. 11.5). Ionic 
conductivity studies are important in studying the motion of lattice defects in ionic 
crystals. Color centers are another type of point defect (or complex of point 
defects). We will discuss them in a little more detail later (Sect. 11.4). Color 
centers are formed by defects and their surrounding potential, which trap electrons 
(or holes). 

 

Vacancy

Substitutional

Interstitial 

 
Fig. 11.1. Point defects 

 
Fig. 11.2. (a) Schottky and (b) Frenkel defects 
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Table 11.1. Summary of common crystal lattice defects 

Point defects Comments 

Foreign atoms Substitutional or interstitial 
Vacancies Schottky defect is vacancy with atom transferred to 

surface 
Antisite Example: A on a B site in an AB compound 
Frenkel Vacancy with foreign atom transferred to interstice 
Color centers Several types – F is vacancy with trapped electron (ionic 

crystals – see Sect. 11.4 
Donors and acceptors Main example are shallow defects in semiconductors – 

see Sects. 11.2 and 11.3 
Deep levels in 
semiconductors 

See Sects. 11.2 and 11.3 

Line defects Comments 

Dislocations Edge and screw – see Sect. 11.6 – General dislocation is a 
combination of these two 

Surface defects Comments 

External  
Tamm and Shockley 
electronic states 

See Sect. 11.1 

Reconstruction See Sect. 12.2 
Internal  

Stacking fault Example: a result of an error in growth2 
Grain boundaries Tilt between adjacent crystallites – can include low angle 

(with angle, in radians, being the ratio of the Burgers 
vector (magnitude) to the dislocation spacing) to large 
angle (which includes twin boundaries) 

Heteroboundary Between different crystals 

Volume defects Comments 

Many examples Three-dimensional precipitates and complexes of defects 

See, e.g., Henderson [11.16]. 

Vacancies, substitutional atoms, and interstitial atoms are all point defects. 
Surfaces are planar defects. There is another class of defects called line defects. 
Dislocations are important examples of line defects, and they will be discussed 

                                                           
2 A fcc lattice along (1,1,1) is composed of planes ABCABC etc. If an A plane is missing 

then we have ABCBCABC, etc. This introduces a local change of symmetry. See, e.g., 
Kittel [23, p. 18]. 
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later (Sect. 11.6). They are important for determining how easily crystals deform 
and may also relate to crystal growth. 

Finally, there are defects that occur over a whole volume. It is usually hard to 
grow a single crystal. In a single crystal, the lattice planes are all arranged as 
expected–in a perfectly regular manner. When we are presented with a chunk of 
material, it is usually in a polycrystal form. That is, many little crystals are stuck 
together in a somewhat random way. The boundary between crystals is also a two-
dimensional defect called a grain boundary. We have summarized these ideas in 
Table 11.1. 

11.2  Shallow and Deep Impurity Levels 
in Semiconductors (EE) 

We start by considering a simple chemical model of shallow donor and acceptor 
defects. We will give a better definition later, but for now, by “shallow”, we will 
mean energy levels near the bottom of the conduction band for donor level and 
near the top of the valence band for acceptors. 

Consider Si14 as the prototype semiconductor. In the usual one-electron shell 
notation, its electron structure is denoted by 

 22622 3p3s2p2s1s . 

There are four valence electrons in the 3s23p2 shell, which requires eight to be 
filled. We think of neighboring Si atoms sharing electrons to fill the shells. This 
sharing lowers energy and binds the electrons. We speak of covalent bonds. 
Schematically, in two dimensions, we picture this occurring as in Fig. 11.3. Each 
line represents a shared electron. By sharing, each Si in the outer shell has eight 
electrons. This is of course like the discussion we gave in Chap. 1 of the bonding 
of C to form diamond. 

Si

Si

Si

SiSi

 
Fig. 11.3. Chemical model of covalent bond in Si 



11.3 Effective Mass Theory, Shallow Defects, and Superlattices (A)      591 

 

Now, suppose we have an atom, say As, which substitutionally replaces a Si. 
The sp shell of As has five electrons (4s24p3) and only four are needed to “fill the 
shell”. Thus, As acts as a donor with an additional loosely bound electron (with a 
large orbit encompassing many atoms), which can be easily excited into the 
conduction band at room temperature. 

An acceptor like In (with three electrons in its outer sp shell (5s25p)) needs four 
electrons to complete its covalent bonds. Thus, In can accept an electron from the 
valence band, leaving behind a hole. The combined effects of effective mass and 
dielectric constant cause the carrier to be bound much less tightly than in an 
analogous hydrogen atom. The result is that donors introduce energy levels just 
below the conduction-band minimum and acceptors introduce levels just above 
the top of the valence band. We discuss this in more detail below. 

In brief, it turns out that the ground-state donor energy level is given by 
(atomic units, see the appendix) 

 222
/
εn
mmEn

∗
−= , (11.1) 

where m*/m is the effective mass ratio typically about 0.25 for Si and ε is the 
dielectric constant (about 11.7 in Si). En in (11.1) is measured from the bottom of 
the conduction band. Except for the use of the dielectric constant and the effective 
mass, this is the same result as obtained from the theory of the energy levels of 
hydrogen. A similar, remarkably simple result holds for acceptor states. These 
results arise from pioneering work by Kohn and Luttinger as discussed in [11.17], 
and we develop the basics below. 

11.3  Effective Mass Theory, Shallow Defects, and 
Superlattices (A) 

11.3.1  Envelope Functions (A) 

The basic model we will use here is called the envelope approximation.3 It will 
allow us to justify our treatments of effective mass theory and of shallow defects 
in semiconductors. With a few more comments, we will then be able to relate it to 
a simple approach to superlattices, which will be discussed in more detail in 
Chap. 12. 

Let 
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3 Besides [11.17], see also Luttinger and Kohn [11.22] and Madelung [11.23]. 
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where V(r) is the periodic potential. Let H = H0 + U where U = VD(r) is the extra 
defect potential. Now, H0ψn(k, r) = Enψn(k, r) and Hψ = Eψ. 

We expand the wave function in Bloch functions 

 ∑= k rkk, ),()(n nna ψψ , (11.3) 

where n is the band index. Also, since En(k) is a periodic function in k-space, we 
can expand it in a Fourier series with the sum restricted to lattice points 

 ∑ ⋅= m nmn mFE Rkk ie)( . (11.4) 

We define an operator En(−i∇) by substituting −i∇ for k: 
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by the properties of Taylor’s series. Then using Bloch’s theorem 

 ∑ ⋅=− m nnmnn meFE ),(),()i( i rkrk Rk ψψ∇ , (11.6) 

and by (11.4) 

 ),()(),()i( rkkrk nnnn EE ψψ =− ∇ . (11.7) 

Substituting (11.3) into Hψ = Eψ, we have (using the fact that ψn is an 
eigenfunction of H0 with eigenvalue En(k)) 
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If we use (11.4) and (11.6), this becomes 

 ψψ EVEan nDnn =+−∑ k rkk, ),(])i()[( ∇ . (11.9) 

11.3.2  First Approximation (A) 

We neglect band-to-band interactions and hence, neglect the summation over n. 
Dropping n entirely from (11.9), we have 

 ∑= k rkk ),()( ψψ a , (11.10) 

and 

 ψψ EVE D =+− ),(])i([ rk∇ . (11.11) 
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11.3.3  Second Approximation (A) 

We assume a large extension in real space that means that only a small range of k 
values are important – say the ones near a parabolic (assumed for simplicity) 
minimum at k = 0 (Madelung op. cit. Chap. 9). 

We assume, then, 

 ),0(e),0(e),(e),( iii rrrkrk rkrkrk ψψ ⋅⋅⋅ =≅= uu  (11.12) 

so using (11.10) and (11.12), 
 ),0()( rr ψψ F= , (11.13) 

where 

 ∑ ⋅= k
rkkr ie)()( aF . (11.14) 

So, we have by (11.11) 
 ),0()(),0()(])i([ rrrr ψψ EFFVE D =+− ∇ . (11.15) 

Using the definition of E(−i∇) as in (11.5) we have with n suppressed, 
 ),0()()(),0()( rrRrRr ψψ FVEFF Dm mmm −=++∑ . (11.16) 

But, ψ(0, r + Rm) = ψ(0, r), so it can be cancelled. Thus retracing our steps, we 
have 
 )()(])i([ rr EFFVE D =+− ∇ . (11.17) 

This simply means that a rapidly varying function has been replaced by a slowly 
varying function F(r) called the “envelope” function. This immediately leads to 
the concept of shallow donors. Consider the bottom of a parabolic conductor band 
near k = 0 and expand about k = 0; 
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Also, 
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where m* is the effective mass. Thus, we find 
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And, if VD = e2/4πεr, our resulting equation is  
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Except for the use of ε and m*, these solutions are just hydrogenic wave functions 
and energies, and so our use of the hydrogenic solution (11.1) is justified. 

Now let us discuss briefly electron and hole motion in a perfect crystal. If U = 
0, we simply write 
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On the other hand, suppose U is still 0, but consider a valence band with a 
maximum at k = 0. We then can expand about that point with the following result: 
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Using the hole mass, which has the opposite sign for the electron mass (mh = −me), 
we can write 
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so the relevant Schrödinger equation becomes 
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Looking at (11.23) and (11.26), we see how discontinuities in band energies can 
result in effective changes in the potential for the carriers, and we see why the 
hole energies are inverted from the electron energies. 

Now let us consider superlattices with a set of layers so there is both a lattice 
periodicity in each layer and a periodicity on a larger scale due to layers (see 
Sect. 12.6). The layers A and B could for example be laid down as ABABAB… 

There are several more considerations, however, before we can apply these 
results to superlattices. First, we have to consider that if we are to move from a 
region of one band structure (layer) to another (layer), the effective mass changes 
since adjacent layers are different. With the possibility of change in effective 
mass, the Hamiltonian is often written as 

 )(
)(

1
2

2
zV

zzmz
H +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∗ ∂

∂
∂
∂= , (11.27) 



11.3 Effective Mass Theory, Shallow Defects, and Superlattices (A)      595 

 

rather than in the more conventional way. This allows the Hamiltonian to remain 
Hermitian, even with varying m*, and it leads to a probability current density of 
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from which we apply the requirement of continuity on ψ and ∂ψ/(m*∂z) rather than 
ψ and ∂ψ/∂z. 

We have assumed the thickness of each layer is sufficient that the band 
structure of the material can be established in this thickness. Basically, we will 
need both layers to be several monolayers thick. Also, we assume in each layer 
that the electron wave function is an envelope function (different for different 
monolayers) times a Bloch function (see (11.13)). Finally, we assume that in each 
layer U = U0 (a constant appropriate to the layer) and the carrier motion 
perpendicular to the layers is free-electron-like so, 
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which means 
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where for each layer 
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There are many, many complications to the above. We have assumed, e.g., that 
m*

x,y = m*
z which may not be so in all cases. The book by Bastard [11.1] can be 

consulted. See also, Mitin et al [11.25]. 
In semiconductors, shallow levels are often defined as being near a band edge 

and deep levels as being near the center of the forbidden energy gap. In more 
recent years, a different definition has been applied based on the nature of the 
causing agent. Shallow levels are now defined as defect levels produced by the 
long-range Coulomb potential of the defect and deep levels4 are defined as being 
produced by the central cell potential of the defect, which is short ranged. Since 

                                                           
4 See, e.g., Li and Patterson [11.20, 11.21] and references cited therein. 
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the potential is short range, a modification of the Slater-Koster model, already 
discussed in Chap. 2, is a convenient starting point for discussing deep defects. 
Some reasons for the significance of shallow and deep defects are given in Table 
11.2. Deep defects are commonly formed by substitutional, interstitial, and antisite 
atoms and by vacancies. 

Table 11.2. Definition and significance of deep and shallow levels 

Shallow levels are defect levels produced by the long-range Coulomb potential of 
defects. Deep Levels are defect levels produced by the central cell potential of defect. 

 Deep level Shallow level 

Energy May or may not be near band edge. 
Spectrum is not hydrogen-like. 

Near band edge. 
Spectrum is hydrogen-like. 

Typical 
properties 

Recombination centers. 
Compensators. 
Electron–hole generators. 

Suppliers of carriers. 

11.4  Color Centers (B) 

The study of color centers arose out of the curiosity as to what caused the yellow 
coloration of rock salt (NaCl) and other coloration in similar crystals. This yellow 
color was particularly noted in salt just removed from a mine. Becquerel found 
that NaCl could be colored by placing the crystal near a discharge tube. From a 
fundamental point of view, NaCl should have an infrared absorption due to 
vibrations of its ions and an ultraviolet absorption due to excitation of the 
electrons. A perfect NaCl crystal should not absorb visible light, and should be 
uncolored. The coloration of NaCl must be due, then, to defects in the crystal. The 
main absorption band in NaCl occurs at about 4650 Å (the “F”-band). This blue 
absorption is responsible for the yellow color that the NaCl crystal can have. A 
further clue to the nature of the absorption is provided by the fact that exposure of 
a colored crystal to white light can result in the bleaching out of the color. Further 
experiments show that during the bleaching, the crystal becomes photoconductive, 
which means that electrons have been promoted to the conduction band. It has 
also been found that NaCl could be colored by heating it in the presence of Na 
vapor. Some of the Na atoms become part of the NaCl crystal, resulting in a 
deficiency of Cl and, hence, Cl− vacancies. Since photoconductive experiments 
show that F-band defects can release electrons, and since Cl− vacancies can trap 
electrons, it seems very suggestive that the defects responsible for the F-band 
(called “F-centers”) are electrons trapped at Cl− vacancies. (Note:  the “F” comes 
from the German farbe, meaning “color”.) This is the explanation accepted today. 
Of course, since some Cl− vacancies are always present in a NaCl crystal in 
thermodynamic equilibrium, any sort of radiation that causes electrons to be 
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knocked into the Cl− vacancies will form F-centers. Thus, we have an explanation 
of Becquerel’s early results as mentioned above. 

More generally, color centers are formed when point defects in crystals trap 
electrons with the resultant electronic energy levels at optical frequencies. Color 
centers usually form “deep” traps for electrons, rather than “shallow” traps, as 
donor impurities in semiconductors do, and, their theoretical analysis is complex. 
Except for relatively simple centers such as F-centers, the analysis is still 
relatively rudimentary. 

Typical experiments that yield information about color centers involve optical 
absorption, paramagnetic resonance and photoconductivity. The absorption 
experiments give information about the transition energies and other properties of 
the transition. Paramagnetic resonance gives wave function information about the 
trapped electron, while photoconductivity yields information on the quantum 
efficiency (number of free electrons produced per incident photon) of the color 
centers. 

Mostly by interpretation of experiment, but partly by theoretical analysis, 
several different color centers have been identified. Some of these are listed 
below. The notation is 

 [missing ion | trapped electron | added ion], 

where our notation is p ≡ proton, e ≡ electron, − ≡ halide ion, + ≡ alkaline ion, and 
M++ ≡ doubly charged positive ion. The usual place to find color centers is in ionic 
crystals. 

[−|e|] = F-center 
[−|2e|] = F′-center 

[∓−|2e|] = M-center (?) 

[|e|p] = U2-center 
[+|e|M++] = Z1-center (?). 

In Figs 11.4 and 11.5 we give models for two of the less well-known color 
centers. In these two figures, ions enclosed by boxes indicate missing ions, a dot 
means an added electron, and a circle includes a substitutionally added ion. We 
include several references to color centers. See, e.g., Fowler [11.12] or Schulman 
and Compton [11.28]. 

Color centers turn out to be surprisingly difficult to treat theoretically with 
precision. But success has been obtained using modern techniques on, e.g., F 
centers in LiCl. See, e.g., Louie p. 94, in Chelikowsky and Louie [11.4]. In recent 
years tunable solid-state lasers have been made using color centers at low 
temperatures. 
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M-center models

(a) (b)  
Fig. 11.4. Models of the M-center: (a) Seitz, (b) Van Doorn and Haven. [Reprinted with 
permission from Rhyner CR and Cameron JR, Phys Rev 169(3), 710 (1968). Copyright 
1968 by the American Physical Society.] 

 

A C 

B D 

 
Fig. 11.5. Four proposed models for Z1-centers [Reprinted with permission from Paus H 
and Lüty F, Phys Rev Lett 20(2), 57 (1968). Copyright 1968 by the American Physical 
Society.] 

11.5  Diffusion (MET, MS) 

Point defects may diffuse through the lattice, while vacancies may provide a 
mechanism to facilitate diffusion. Diffusion and defects are intimately related, so 
we give a brief discussion of diffusion. If C is the concentration of the diffusing 
quantity, Fick’s Law says the flux of diffusing quantities is given by 
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where D is, by definition, the diffusion constant. Combining this with the equation 
of continuity 
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J , (11.34) 

leads to the diffusion equation 
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For solution of this equation, we refer to several well-known treatises as referred 
to in Borg and Dienes [11.2]. Typically, the diffusion constant is a function of 
temperature via 

 )/exp( 00 kTEDD −= , (11.36) 

where E0 is the activation energy that depends on the process. Interstitial defects 
moving from one site to an adjacent one typically have much less E0 than say, 
vacancy motion. Obviously, the thermal variation of defect diffusion rates has 
wide application. 

11.6  Edge and Screw Dislocation (MET, MS) 

Any general dislocation is a combination of two basic types: the edge and the 
screw dislocations. The edge dislocation is perhaps the easiest to describe. If we 
imagine the pages in a book as being crystal planes, then we can visualize an edge 
dislocation as a book with half a page (representing a plane of atoms) missing. 
The edge dislocation is formed by the missing half-plane of atoms. The idea is 
depicted in Fig. 11.6. The motion of edge dislocations greatly reduces the shear 
strength of crystals. Originally, the shear strength of a crystal was expected to be 
much greater than it was actually found to be for real crystals. However, all large 
crystals have dislocations, and the movement of a dislocation can greatly aid the 
shearing of a crystal. The idea involves similar reasoning as to why it is easier to 
move a rug by moving a wrinkle through it rather than moving the whole rug. The 
force required to move the wrinkle is much less. 

Crystals can be strengthened by introducing impurity atoms (or anything else), 
which will block the motion of dislocations. Dislocations themselves can interfere 
with each other’s motions and bending crystals can generate dislocations, which 
then causes work hardening. Long, but thin, crystals called whiskers have been 
grown with few dislocations (perhaps one screw dislocation to aid growth – see 
below). Whiskers can have the full theoretical strength of ideal, perfect crystals. 

The other type of dislocation is called a screw dislocation. Screw dislocations 
can be visualized by cutting a book along A (see Fig. 11.7), then moving the upper 
half of the book a distance of one page and taping the book into a spiral staircase. 
Another view of the dislocation is shown in Fig. 11.8 where successive atomic 
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planes are joined together to form one surface similar to the way a kind of 
Riemann surface can be defined. Screw dislocations greatly aid crystal growth. 
During the growth, a wandering atom finds two surfaces to “stick” to at the 
growth edge (or jog) (see Fig. 11.8) rather than only one flat plane. Actual crystals 
have shown little spirals on their surface corresponding to this type of growth. 

 

 
Fig. 11.6. An edge dislocation 

 
Screw 

Dislocations 

By 
J. D. Patterson

A

 
Fig. 11.7. A book can be used to visualize screw dislocations 

 Jog

 
Fig. 11.8. A screw dislocation 

We have already mentioned that any general dislocation is a combination of the 
edge and screw. It is well at this point to make the idea more precise by the use of 
the Burgers vector, which is depicted in Fig. 11.9. We take an atom-to-atom path 
around a dislocation line. The path is drawn in such a way that it would close on 
itself as if there were no dislocations. The additional vector needed to close the 
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path is the Burgers vector. For a pure edge dislocation, the Burgers vector is 
perpendicular to the dislocation line; for a pure screw dislocation, it is parallel. In 
general, the Burgers vector can make any angle with the dislocation line, which is 
allowed by crystal symmetry. The book by Cottrell [11.6] is a good source of 
further details about dislocations. See also deWit [11.9]. 

11.7  Thermionic Emission (B) 

We now discuss two very classic and important properties of the surfaces of 
metals – in this Section thermionic emission and in the next Section cold-field 
emission. 

So far, we have mentioned the role of Fermi–Dirac statistics in calculating the 
specific heat, Pauli paramagnetism, and Landau diamagnetism. In this Section we 
will apply Fermi–Dirac statistics to the emission of electrons by heated metals. It 
will turn out that the fact that electrons obey Fermi–Dirac statistics is relatively 
secondary in this situation. 

It is also possible to have cold (no heating) emission of electrons. Cold 
emission of electrons is obtained by applying an electric field and allowing the 
electrons to tunnel out of the metal. This was one of the earliest triumphs of 
quantum mechanics in explaining hitherto unexplained phenomena. It will be 
explained in the next section.5 

For the purpose of the calculation in this section, the surface of the metal will 
be pictured as in Fig. 11.10. In Fig. 11.10, EF is the Fermi energy, φ is the work 
function, and E0 is the barrier height of the potential. The barrier can at least be 
partially understood by an image charge calculation. 

                                                           
5 A comprehensive review of many types of surface phenomena is contained in Gundry 

and Tompkins [11.14]. 

 

b 

Dislocation 
line 

 
Fig. 11.9. Diagram used for the definition of the Burgers vector b 
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Fig. 11.10. Model of the surface of a metal used to explain thermionic emission 

We wish to calculate the current density as a function of temperature for the 
heated metal. If n(p) d3p is the number of electrons per unit volume in p to p + d3p 
and if vx is the x component of velocity of the electrons with momentum p, we can 
write the rate at which electrons with momentum from p to p + d3p hit a unit area 
in the (x,y)-plane as 

 zyxxx pppmpnnv ddd)/)((d)( 3 ppp = . (11.37) 
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so that 

 3/)(2)( hEfn =p . (11.40) 

In (11.40), f (E) is the Fermi function and the factor 2 takes the spin degeneracy of 
the electronic states into account. Finally, we need to consider that only electrons 
whose x component of momentum px satisfies 

 Fx Emp +> φ2/2  (11.41) 

will escape from the metal. 
If we assume the probability of reflection at the surface of the metal is R and is 

constant (or represents an average value), the emission current density j is e (the 
electronic charge, here e > 0) times the rate at which electrons of sufficient energy 
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strike unit area of the surface times Tr ≡ 1 − R. Thus, the emission current density 
is given by 
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At common operating temperatures, G >> 1, so since ln(1 + ε) ≈ ε (for small ε) we 
can write (this approximation amounts to replacing Fermi–Dirac statistics by 
Boltzmann statistics for all electrons that get out of the metal) 
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Thus, so far as the temperature dependence goes, we can write 

 kTATj /2e φ−= , (11.45) 

where A is a quantity that can be determined from the above expressions. In actual 
practice there is little point to making this evaluation. Our A depends on having an 
idealized surface, which is never realized. Typical work functions φ, as 
determined from thermionic emission data, are of the order of 5 eV, see Table 
11.3. 

Equation (11.45) is often referred to as the Richardson–Dushmann equation. It 
agrees with experimental results at least qualitatively. Account must be taken, 
however, of adsorbates that can lower the effective work function.6 

                                                           
6 See Zanquill [11.33]. 
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Table 11.3. Work functions 

Element φ (eV) 

Ag 
100 
110 
111 
poly 

 
4.64 
4.52 
4.74 
4.26 

Co poly 5 
Cu poly 4.65 
Fe poly 4.5 
K poly 2.3 
Na poly 2.75 
Ni poly 5.15 
W poly 4.55 

From Anderson HL (ed), A Physicists Desk Reference
2nd edn, Article 21: Hagstum HD, Surface Physics,
p. 330, American Institute of Physics, (1989) by
permission of Springer-Verlag. Original data from 
Michaelson HB, J Appl Phys 48, 4729 (1977). 

11.8  Cold-Field Emission (B) 

To have a detectable cold-field emission it is necessary to apply a strong electric 
field. The strong electric field can be obtained by using a sharp point, for example. 
We shall assume that we have applied an electric field E1 in the −x direction to the 
metal so that the electron’s potential energy (with −e the charge of the electron) 
produced by the electric field is V = E0 − eE1x. The form of the potential function 
near the surface of the metal will be assumed to be as in Fig. 11.11. 

 

EF

φ

Metal Vacuum

E0

x

E

x0

V = E0 – eE1x

 
Fig. 11.11. Potential energy for tunneling from a metal in the presence of an applied 
electric field 
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To calculate the current density, which is emitted by the metal when the 
electric field is applied, it is necessary to have the transmission coefficient for 
tunneling through the barrier. This transmission coefficient can perhaps be 
adequately evaluated by use of the WKB approximation. For a high and broad 
barrier, the WKB approximation gives for the transmission coefficient 
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where 
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x0 is the second classical turning point, and E is, of course, the energy. 
The upper limit of the integral is determined (for an electron of energy E) from 
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Since (E0 − EF) = φ, the transmission coefficient for electrons with the Fermi 
energy is given by 
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Further analysis shows that the current density for field-emitted electrons is given 
approximately by J ∝ E1

2T so, 

 1/2
1

EbeaEJ −= , (11.49) 

where a and b are different constants for different materials. Equation (11.49), 
where b is commonly proportional to φ3/2, is often referred to as the Fowler–Nord-
heim equation. The ideas of Fowler–Nordheim tunneling are also used for the tun-
neling of electrons in a metal-oxide-semiconductor (MOS) structure. See also Sarid 
[11.27]. 

There is another type of electron emission that is present when an electric field 
is applied. When an electric field is applied, the height of the potential barrier is 
slightly lowered. Thus more electrons can be classically emitted (without 
tunneling) by thermionic emission than previously. This additional emission due 
to the lowering of the barrier is called Schottky emission. If we imagine the barrier 
is caused by image charge attraction, it is fairly easy to see why the maximum 
barrier height should decrease with field strength. Simple analysis predicts the 
barrier lowering to be proportional to the square root of the magnitude of the 
electric field. The idea is shown in Fig. 11.12. See Problem 11.7.  
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11.9  Microgravity (MS) 

It is believed that crystals grown in microgravity will often be more perfect. 
S. Lehoczky of Marshall Space Flight Center has been experimenting for years 
with growing mercury cadmium telluride in microgravity (on the Space Shuttle) 
with the idea of producing more perfect crystals that would yield better infrared 
detectors. See, e.g., Lehoczky et al [11.19]. 

First, we should talk about what microgravity is and what it is not. It is not the 
absence of gravity, or even a region where gravity is very small. Unless one goes 
very far from massive bodies, this is impossible. Even at a Shuttle orbit of 300 km 
above the Earth, the force of gravity is about 90% the value experienced on the 
Earth. 

Newton himself understood the principle. If one mounts a cannon on a large 
mountain on an otherwise flat Earth and fires the cannonball horizontally, it will 
land some distance away from the base of the mountain. Adding more powder will 
cause the ball to go further. Finally, a point will be reached when the ball falls 
exactly the same amount that the earth curves. The ball will then be in free-fall 
and in orbit. The effects of gravity for objects inside the ball will be very small. In 
an orbiting satellite, there will be exactly one surface where the effects of gravity 
are negligible. At other places inside, one has “microgravity”. 

There are many ways to produce microgravity; all you have to do is arrange to 
be in free-fall. Drop towers and drop tubes offer two ways of accomplishing this. 
The first commercial use of microgravity was probably the drop tower used in 
1785 in England to make spherical lead balls. Marshall Space Flight Center had 
both a drop tower and a drop tube 100 meters high–this alone allowed free-fall, or 
microgravity, for about 5 s. In a drop tower, the entire experimental package is 
dropped. For crystal growth experiments, this means the furnace as well as the 
instrumentation and the specimen are all placed in a special canister and dropped. 

 
Fig. 11.12. The effect of an electric field on the surface barrier of a metal: (a) with no field, 
and (b) with a field 
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In a drop tube, there is an enclosure in which, for example, only the molten 
sample would be dropped. Special aerodynamic design, vacuum, or other means is 
used to reduce air drag and, hence, obtain real free-fall. For slightly longer times 
(20 s or so), the KC 135 aircraft can be put into a parabolic path to produce 
microgravity. Extending this idea, rockets have been used to produce microgravity 
for periods of about 400 s. 

Problems 

11.1 Give a simple derivation of Ivey’s law. Ivey’s law states that fa2 = constant 
where f is the frequency of absorption in the F-band and a is the lattice 
spacing in the colored crystal. Use as a model for the F-center an electron in 
a box and assume that the absorption is due to a transition between the 
ground and first excited energy states of the electron in the box. 

11.2 The F-center absorption energy in NaCl is about 2.7 eV. For a particle in a 
box of side aNaCl = 5.63 × 10−10 m, find the excitation energy of an electron 
from the ground to the first excited state. 

11.3 A low-angle grain boundary is found with a tilt angle of about 20 s on a 
(100) surface of Ge. What is the prediction for the linear dislocation density 
of etch pits predicted? 

11.4 Find the allowed energies of a hydrogen atom in two dimensions. The 
answer you should get is [12.54] 
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where n is a nonzero integer. R is the Rydberg constant that can be written 
as 
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where K = ε/ε0 with ε the appropriate dielectric constant. Since the Bohr 
radius is 
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one can also write 
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Note that the result is the same as the three-dimensional hydrogen atom if 
one replaces n by n − ½. 
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11.5 Quantum wells will be discussed in Chap. 12. Find the allowed energies of a 
donor atom, represented by a hydrogen atom with electron mass m and in a 
region of dielectric constant as above. Suppose the quantum well is of width 
w and with infinite sides with potential energy V(z). Also suppose w << aB. 
In this case the wave function for a donor in a quantum well is 
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where V(z) = 0 for 0 < z < w and is infinite otherwise. The answer is 
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p, n are nonzero integers and R is the Rydberg constant [12.54]. 

11.6 a) Show that a solution of the one-dimensional diffusion equation is 
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11.7 This problem illustrates the Schottky effect. See Fig. 11.11 and Fig. 11.12. 
Suppose the attraction outside the metal is caused by an image charge. 

a) Show that in the absence of an electric field we can write the potential 
energy as 
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b) Thus show that with the electric field E1, the barrier height is reduced 
from E0 to E0 −Δ, where 
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12  Current Topics in Solid Condensed–Matter 
Physics 

This chapter is concerned with some of the newer areas of solid condensed-matter 
physics and so contains a variety of topics in nanophysics, surfaces, interfaces, 
amorphous materials, and soft condensed matter. 

There was a time when the living room radio stood on the floor and people 
gathered around in the evening and “watched” the radio. Radios have become 
smaller and smaller and thus, increasingly cheaper. Eventually, of course, there 
will be a limit in smallness of size to electronic devices. Fundamental physics 
places constraints on how small the device can be and still operate in a “conven-
tional way”. Recently people have realized that a limit for one kind of device is an 
opportunity for another. This leads to the topic of new ways of using materials, 
particularly semiconductors, for new devices. 

Of course, the subject of electronic technology, particularly semiconductor 
technology, is too vast to consider here. One main concern is the fact that quantum 
mechanics places basic limits on the size of devices. This arises because quantum 
mechanics associates a wavelength with the electrons that carry current and elec-
trical signals. Quantum effects become important when electron wavelength be-
comes comparable to component size. In particular, the phenomenon of tunneling, 
which is often assumed to be of no importance for most ordinary microelectronic 
devices becomes important in this limit. We will discuss some of the basic physics 
needed to understand these devices, in which tunneling and related phenomena are 
important. Here we get into the area of bandgap engineering to attain structures 
that have desired properties not attainable with homostructures. Generally, these 
structures are nanostructures. A nanostructure is a condensed-matter structure 
having at least one minimum dimension between about 1 nm to 10 nm. 

We will start by discussing surfaces and then consider how to form nanostructures 
on surfaces by molecular beam epitaxy. Nanostructures may be two dimensional 
(quantum wells), one dimensional (quantum wires), or “zero” dimensional (quantum 
dots). We will discuss all of these and also talk about heterostructures, superlattices, 
quantum conductance, Coulomb blockade, and single-electron devices. 

Another reduced-dimensionality effect is the quantum Hall effect, which arises 
when electrons in a magnetic field are confined two dimensionally. As we will 
see, the ideas and phenomena involved are quite novel. 

Carbon, carbon nanotubes, and fullerene nanotechnology may lead to entirely 
new kinds of devices and they are also included in this chapter, as the nanotubes 
are certainly nanostructures. 
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Amorphous, noncrystalline disordered solids have become important and we 
discuss them as examples of new materials if not reduced dimensionality. 

Finally, the new area of soft condensed-matter physics is touched on. This area 
includes liquid crystals, polymers, and other materials that may be “soft” to the 
touch. The unifying idea here is the ease with which the materials deform due to 
external forces. 

12.1  Surface Reconstruction (MET, MS) 

As already mentioned, the input and output of a device go through the surface, so 
physical understanding of surfaces is critical. Of course, the nature of the surface 
also affects crystal growth, chemical reactions, thermionic emission, semiconduct-
ing properties, etc. 

One generally thinks of the surface of a material as being the top two or three 
layers. The rest can be called the bulk or substrate. The distortion near the surface 
can be both perpendicular (stretching or contracting) as well as parallel. Below we 
concentrate on that which is parallel. 

If we project the bulk with its periodicity on the surface and if no reconstruc-
tion occurs we say the surface is 1 × 1. More likely the lack of bonding forces on 
the surface side will cause the surface atoms to find new locations of minimum 
energy. Then the projection of the bulk on the surface is different in symmetry 
from the surface. For the special case where the projection defines primitive sur-
face vectors a and b, while the actual surface has primitive vectors aS = Na and bS 
= Mb then one says one has an N × M reconstruction. If there also is a rotation R 
of β associated with aS and bS primitive cell compared to the a, b primitive cell we 
write the reconstruction as 

 βRSS
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Note that the vectors a and b depend on whether the original (unreconstructed or 
unrelaxed) surface is (1, 1, 1) or (1, 0, 0), or in general (h, k, l). For a complete 
description the surface involved would also have to be included. The reciprocal 
lattice vectors A, B associated with the surface are defined in the usual way as 
 π2=⋅=⋅ SS bBaA , (12.1a) 

and 
 0=⋅=⋅ SS aBbA , (12.1b) 

where the 2π now inserted in an alternative convention for reciprocal lattice vec-
tors. One uses these to discuss two-dimensional diffraction. 

Low-energy electron diffraction (LEED, see Sects. 1.2.7 and 12.2) is com-
monly used to examine the structure of surfaces. This is because electrons, unlike 
photons, have charge and thus, do not penetrate too far into materials. There are 
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theoretical techniques, including those using the pseudopotential, which are avail-
able. See Chen and Ho [12.12]. 

Since surfaces are so important for solid-state properties we briefly review 
techniques for their characterization in the next section. 

12.2  Some Surface Characterization Techniques (MET, 
MS, EE) 

AFM: Atomic Force Microscopy–This instrument detects images of surfaces on an 
atomic scale by sensing atomic forces between the sample and a cantilevered tip 
(in one kind of mode, there are various modes of operation). Unlike STMs (see 
below), this instrument can be used for nonconductors as well as conductors. 

AES: Auger Electron Spectroscopy–uses an alternative (to X-ray emission) decay 
scheme for an excited core hole. The core hole is often produced by the impact of 
energetic electrons. An electron from a higher level makes a transition to fill the 
hole, and another bound electron escapes with the left-over energy. The Auger 
process leaves two final-state holes. The energy of the escaping electron is related 
to the characteristic energies of the atom from which it came, and therefore 
chemical analysis is possible. 

EDX: Energy Dispersive X-ray Spectroscopy–electrons are incident at a grazing 
angle and the energy of the grazing X-rays that are produced, are detected and ana-
lyzed. This technique has sensitivities comparable to Auger electron spectroscopy.  

Ellipsometry–study of the reflection of plane-polarized light from the surface of 
materials to determine the properties of these materials by measuring the elliptic-
ity of the reflected light. 

EELS: Electron Energy Loss Spectroscopy–electrons scattered from surface atoms 
may lose amounts of energy dependent on surface excitations. This can be used to 
examine surface vibrational modes. It is also used to detect surface plasmons. 

EXAFS: Extended X-ray Absorption Spectroscopy–photoelectrons caused to be 
emitted by X-rays are backscattered from surrounding atoms. They interfere with 
the emitted photoelectrons and give information about the geometry of the atoms 
that surround the original absorbing atom. When this technique is surface specific, 
as for detecting Auger electrons, it is called SEXAFS. 

FIM: Field Ion Microscopy–this can be used to detect individual atoms. Ions of 
the surrounding imaging gas are produced by field ionization at a tip and are de-
tected on a fluorescent screen placed at a distance, to which ions are repelled. 

LEED: Low-Energy Electron Diffraction–due to their charge, electrons do not 
penetrate deeply into a surface. LEED is the coherent reflection or diffraction of 

 
 



612      12 Current Topics in Solid Condensed–Matter Physics 

 

electrons typically with energy less than hundreds of electron volts from the sur-
face layers of a solid. Since it is from the surface, the diffraction is two-
dimensional and can be used to examine surface reconstruction. 

RHEED: Reflection High-Energy Electron Diffraction–high-energy electrons can 
also be diffracted from the surface, provided they are at grazing incidence and so 
do not greatly penetrate. 

SEM: Scanning Electron Microscopy–a focused electron beam is scanned across a 
surface. The emitted secondary electrons are used as a signal that, in a synchronous 
manner, is displayed on the surface of an oscilloscope. An electron spectrometer 
can be used to only display electrons whose energies correspond to an Auger peak, 
in which case the instrument is called a scanning Auger microscope (SAM). 

SIMS: Secondary Ion Mass Spectrometry–a destructive but sensitive surface tech-
nique. Kiloelectron-volt ions bombard a surface and knock off or sputter ions, 
which are analyzed by a mass spectrometer and thus can be chemically analyzed. 

TEM: Transmission Electron Microscopy–this is like SEM except that the elec-
trons transmitted through a thin specimen are examined. Both elastically and ine-
lastically scattered electrons can be examined, and high contrast is possible. 

STM: Scanning Tunneling Microscopy–A sample (metal or semiconductor) has a 
sharp metal tip placed within 10 Å or less of its surface. A small voltage of order 
1 V is established between the two. Since the wave functions of the atoms on the 
surface of the sample and the tip overlap, in equilibrium the Fermi energies of the 
sample and tip equalize and under the voltage difference a tunneling current of 
order nanoamperes will flow between the two. Since the current flow is due to 
tunneling, it depends exponentially on the distance from the sample to the tip. The 
exponential dependence makes the tunneling sensitive to sub-angstrom changes in 
distance, and hence it is possible to use this technique to detect and image indi-
vidual atoms. The current depends on the local density of states (LDOS) at the 
surface of the sample and hence is used for LDOS mapping. The position of the 
tip is controlled by piezoelectric transducers. The apparatus is operated in either 
the constant-distance or constant-current mode. 

UPS: Ultraviolet Photoelectron (or Photoemission) Spectroscopy–the binding 
energy of a core electron is measured by measuring the energy of the core electron 
ejected by the ultraviolet photon. For energies not too high, the energy distribution 
of emitted electrons is dominated by the joint density of initial and final states. An 
angle-resolved mode is often used since the parallel (to the surface) component of 
the k vector as well as the energy is conserved. This allows experimental determi-
nation of the energy of the initial occupied state for which k parallel is thus known 
(see Sect. 3.2.2). See also Table 10.3. 

XPS: X-ray Photoelectron (or Photoemission) Spectroscopy–the binding energy of 
a core electron is measured by measuring the energy of the core electron ejected 
by the X-ray photon–also called ESCA. See also Table 10.3 



12.3 Molecular Beam Epitaxy (MET, MS)      613 

 

There are of course many other characterization techniques that we could dis-
cuss. There are many kinds of scanning probe microscopes, for example. There are 
many kinds of characterization techniques that are not primarily related to surface 
properties. Some ideas have already been discussed. Elastic and inelastic X-ray and 
neutron scattering come immediately to mind. Electrical conductivity and other 
electrical measurements can often yield much information, as can the many kinds of 
magnetic resonance techniques. Optical techniques can yield important information 
(see, e.g., Perkowitz [12.49], as well as Chap. 10 on optical properties in this book). 
Raman scattering spectroscopy is often important in the infrared. Spectroscopic 
data involves information about intensity versus frequency. In Raman scattering, 
the incident photon is inelastically scattered by phonons. Commercial instruments 
are available, as they are for FTIR (Fourier transform infrared spectroscopy), which 
use a Michelson interferometer to increase the signal-to-noise ratio and get the Fou-
rier transform of the intensity versus frequency. A FFT (fast Fourier transform) 
algorithm is then used to get the intensity versus frequency in real time. Perkowitz 
also mentions photoluminescence spectroscopy, where in general after photon exci-
tation an electron returns to its initial state. Commercial instruments are also avail-
able. This technique gives fingerprints of excited states. Considerable additional 
information about characterization can be found in Bullis et al [12.5]. For a general 
treatment see Prutton [12.52] and Marder (preface ref. 6, pp73-82). 

12.3  Molecular Beam Epitaxy (MET, MS) 

Molecular beam epitaxy (MBE) was developed in the 1970s and is by now a 
common technology for use in making low-dimensional solid-state structure. 
MBE is an ultrathin film vacuum technique in which several atomic and/or mo-
lecular beams collide with and stick to the substrate. Epitaxy means that at the 
interface of two materials, there is a common crystal orientation and registry of 
atoms. The substrates are heated to temperature T and mounted suitably. Each 
effusion cell, from which the molecular beams originate, are held at appropriate 
temperatures to maintain a suitable flux. The effusion cells also have shutters so 
that the growth of layers due to the molecular beams can be controlled (see 
Fig. 12.1). MBE produces high-purity layers in ultrahigh vacuum. Abrupt transi-
tions on an atomic scale can be grown at a rate of a few (tens of) nanometers per 
second. See, e.g., Joyce [12.31]. Other techniques for producing layered structures 
include chemical vapor deposition and electrochemical deposition. 
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Fig. 12.1. Schematic diagram of an ultrahigh vacuum, molecular beam growth system 
(adapted from Joyce BA, Rep Prog Physics 48, 1637 (1985), by permission of the Institute 
of Physics). Reflection high-energy electron diffraction (RHEED) is used for monitoring 
the growth 

12.4  Heterostructures and Quantum Wells 

By use of MBE or other related techniques, heterostructures and quantum wells 
can be formed. Heterostructures are layers of semiconductors with the same crys-
tal structure, grown coherently, but with different bandgaps. Their properties de-
pend heavily on their type. Two types are shown in Fig. 12.2: normal (example 
GaAlAs-GaAs) and broken (example GaSb-InAs). There are also other types. See 
Butcher et al [12.6 p. 15]. ΔEc is the conduction-band offset. 

Two-dimensional quantum wells are formed by sandwiching a small-bandgap 
material between two large-bandgap materials. Energy barriers are formed that 
quantize the motion in one direction. These can be used to form resonant tunneling 
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devices (e.g. by depositing small-bandgap – large-bandgap – small-bandgap – large 
– small, etc. See applications of superlattices in Sect. 12.6.1). A quantum well can 
show increased tunneling currents due to resonance at allowed energy levels in the 
well. The current versus voltage can even show a decrease with voltage for certain 
values of voltage. See Fig. 12.11. Diodes and transistors have been constructed 
with these devices. 

 
ΔEC

Normal (type I) Broken (type II)

ΔEV ΔEV

ΔEC

Gap Gap

Gap

Gap

 
Fig. 12.2. Normal and broken heterostructures 

12.5  Quantum Structures and Single-Electron Devices 
(EE) 

Dimension is an important aspect of small electronic devices. Dimensionality can 
be controlled by sandwiching. If the center of the sandwich is bordered by planar 
materials for which the electronic states are higher (wider bandgaps), then three-
dimensional motion can be reduced to two, producing quantum wells. Similarly 
one can make linear one-dimensional “quantum wires” and nearly zero-
dimensional or “quantum dot” materials. That is, a quantum wire is made by lay-
ing down a line of narrow-gap semiconductors surrounded by a wide-gap one with 
the carriers confined in two dimensions, while a quantum dot involves only a 
small volume of narrow-gap material surrounded by wide-gap material and the 
carriers are confined in all three dimensions. With the quantum-dot structure, one 
may confine or exchange one electron at a time and develop single-electron tran-
sistors that would be fast, low power, and have essentially error-free signals. 
These three types of quantum structures are summarized in Table 12.1. 
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Table 12.1. Summary of three types of quantum structures 

Nanostructures Comments 

Quantum wells Superlattices can be regarded as quantum well layers – alternating 
layers of different crystals (when the wells are not too far apart) 

Quantum wires A crystal enclosed on two sides by another crystalline material, with 
appropriate wider bandgaps 

Quantum dots A crystal enclosed on three sides by another crystalline material – 
sometimes descriptively called a quantum box 

Note: Nanostructures have a least one dimension of a size between approximately one to
ten nanometers. See Sects. 12.6 and 7.4. 
References: 1. Bastard [12.2] 

2. Weisbuch and Vinter [12.65] 
3. Mitin et al [12.47] 

12.5.1  Coulomb Blockade1 (EE) 

The Coulomb blockade model shows how electron–electron interactions can give 
rise to effects that in certain circumstances are very easy to understand. It relates 
to the ideas of single-electron transistors, quantum dots, charge quantization lead-
ing to an energy gap in the density of states for tunneling, and is sometimes even 
qualitatively likened to a dripping faucet. For purposes of illustration, we consider 
a simple model of an artificial atom represented by the metal particle shown in 
Fig. 12.3. 

Experimentally, the conductance (current per voltage bias) from source to drain 
shows large changes with gate voltage. We wish to analyze this with the Coulomb 
blockade model. Let C be the total capacitance between the metal particle and the 
rest of the system, which we will assume is approximately the capacitance be-
tween the metal particle and the gate. Let Vg be the gate voltage, relative to source, 
and assume the source, particle, and drain voltages are close (but sufficiently dif-
ferent to have the possibility of drawing current from source to drain). If there is a 
charge Q on the metal particle, then its electrostatic energy is 

 
C

QQVU g 2

2
+= . (12.2) 

Setting ∂U/∂Q = 0, we find U has a minimum at 

 gCVQQ −== 0 . (12.3) 

If N is an integer, let Q0 = −(N + η)e, where e > 0, so 

 eNCVg )( η+= . (12.4) 

                                                           
1 See Kastner [12.32]. See also Kelly [12.33, pp. 300-305]. 
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Fig. 12.3. Model of a single-electron transistor 

Note that while Q0 can be any value, the actual physical situation will be deter-
mined by the integer number of electrons on the artificial atom (metal particle) 
that makes U the smallest. This will only be at a mathematical minimum if Vg is 
an integral multiple of e/C. 

For −1/2 < η < 1/2, and Vg = (N + η)e/C, the minimum energy is obtained for N 
electrons on the metal particle. The Coulomb blockade arises because of the en-
ergy required to transfer an electron to (or from) the metal particle (you can’t 
transfer less than an electron). We can easily calculate this as follows. Let us con-
sider η between zero and one half. Combining (12.2) and (12.4), 
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U η . (12.5) 

Let the initial charge on the particle be Qi = −Ne and the final charge be Qf = 
−(N ± 1)e. Then for the energy difference, 

 if UUU −= ±±Δ , 

we find 
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We see that for η < 1/2 there is an energy gap for tunneling: the Coulomb block-
ade. For η = 1/2 the energies for the metal particle having N and N + 1 electrons 
are the same and the gap disappears. Since the source and the drain have approxi-
mately the same Fermi energy, one can understand this result from Fig. 12.4. Note 
∆U + is the energy to add an electron and ∆U − is the energy to take away an elec-
tron (or to add a hole). Thus the gap in the allowed states of the particle is e2/C. 
Just above η = 1/2, the number of electrons on the artificial atoms increases by 1 
(to N + 1) and the process repeats as Vg is increased. It is indeed reminiscent of a 
dripping faucet. 
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Source Drain

e2/2C = ΔU+ 

e2/2C = ΔU– Particle 

η = 0 

Source Drain 

Particle

η = 1/2  
Fig. 12.4. Schematic diagram of the Coulomb blockade at η = 0. At η = 1/2 the energy gap 
∆E disappears 

 Conductance 

VgΔVg = e/C  
Fig. 12.5. Periodic conductance peaks 

The total voltage change from one turn on to the next turn on occurs, e.g., when 
η goes from 1/2 to 3/2 or 
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A sketch of the conductance versus gate voltage in Fig. 12.5 shows periodic 
peaks. In order to conduct, an electron must go from source to particle, and then 
from particle to drain (or a hole from drain to particle, etc.). 

Low temperatures are required to see this effect, as one must have 

 
C

ekT
2

2
< , 

so that thermal effects do not wash out the gap. This condition requires small tem-
peratures and small capacitances, such as encountered in nanodevices. In addition 
the metal particle–artificial atom has discrete energy levels that may be observed 
in tunneling experiments by fixing Vg and varying the drain-to-source voltage. See 
Kasner op cit. 
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12.5.2  Tunneling and the Landauer Equation (EE) 

Metal-Barrier-Metal Tunneling (EE) 

We start by considering tunneling through a barrier as suggested in Fig. 12.6. We 
assume each (identical) metal is in local equilibrium with a chemical potential μ. Due 
to an applied external potential difference φ, we assume the chemical potential is 
shifted down by −eφ/2 (e > 0) for metal 1 and up by eφ/2 for metal 2 (see Fig. 12.7). 

Metal 1 Metal 2

Barrier

y 

x 
z 

 
Fig. 12.6. Schematic diagram for barrier tunneling 

 

barrier

2

2
ϕμ e−

μ

Energy 
E

2
ϕμ e+

x
1  

Fig. 12.7. Tunneling sketch 

We consider an electron of energy E and assume it tunnels through the barrier 
without changing energy. We write its energy as (with W defined by the equation 
and assuming for simplicity the same effective mass in all directions) 

 Ckk
mm

kCEWE zy
x +++=++= ∗∗ )(

22
22

222

||
== , 

where C is a constant that determines the bottom of the conduction band and m*, 
assumed constant, is the effective mass. We assume, for this case, that the trans-
mission coefficient T across the barrier depends only on W, T = T(W). We insert a 
factor of 2 for the spin and consider electron flow in the ±x directions. With φ = 0, 
let the chemical potential in each metal be μ and the Fermi function 

 
1]/)exp[(

1),(
+−

=
kTE

Ef
μ

μ . 



620      12 Current Topics in Solid Condensed–Matter Physics 

 

Notice μ → μ – eφ/2 is the same as E → E + eφ/2. Then the current density J is 
(considering current flowing each way, ±x) 
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so substituting we find 
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When the form of the barrier is known and is suitably simple, the transmission 
coefficient is often evaluated by the WKB approximation. J can then be calculated 
by integrating over appropriate limits (W from 0 to E − C and E from C to infin-
ity). This is the standard simple way of looking at tunneling conductance. A dif-
ferent situation is presented below. 

Landauer Equation and Quantum Conductance (EE) 

In mesoscopic (intermediate between atomic and macroscopic sizes) channels at 
small sizes, it may be necessary to have a different picture of transport because of 
quantum effects. In mesoscopic channels at low voltage and low temperatures and 
few inelastic collisions, Landauer has derived that the electronic conductance is 
2e2/h times the number of conductance channels corresponding to all (quantized) 
transverse energies from zero to the Fermi energy. Transverse energy is defined as 
the total energy minus the kinetic energy for velocities in the direction of the 
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channel. We derive this result below (see, e.g., Imry I and Landauer R, More 
Things in Heaven and Earth, Bederson B (ed), Springer-Verlag, 1999, p515ff.) 

We here write the electron energy as 

 nzny
x E

m
kE ,

22

2
+= = , 

where Eny,nz represents the quantized energy corresponding to the y and z direc-
tions. We have replaced the barrier by a device of conductance length L in the x 
direction and with small size in the y and z directions. We assume this small size 
is of order of the electron wavelength and thus Eny,nz is clearly quantized. We also 
regard the two metals as leads to the device and we continue to assume we can 
treat each lead as essentially in thermal equilibrium. 

We assume Tny,nz(E) is the transmission coefficient of the device. Note we have 
allowed for the possibility that T depends on the quantized motion in the y and z 
directions. Thus the current is 

 ∑ ∫ −−+−= nzny nznyx
x eEfeEfETvkL
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. 

Note that dkx/2π is the number of states per unit length, so we multiply by L. then 
we end up with (effectively) the number of electrons, but we want the number per 
unit length so we divide by L. If φ and the temperature are small then 
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Then using vxdkx = (1/=)dE as before, we have 

 ∑= nzny nzny eT
h
eI , , )(2 ϕμ . 

We thus obtain for the conductance 

 ∑== nzny nznyT
h
eIG , ,

2
)(2 μ

ϕ
. 

Note that the sum is only over states with total energy μ so Eny,nz ≤ μ. 
The quantity e2/h is called the quantum of conductance G0 so 
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which is the Landauer equation. This equation has been verified by experiment. 
Recently, a similar effect has been seen for thermal conduction by phonons. Here 
the unit of thermal conduction is (πkB)2T/3h (see Schab [12.53]. 
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12.6  Superlattices, Bloch Oscillators, 
Stark–Wannier Ladders 

A superlattice is a set of essentially epitaxial layers (with thickness in nanometers) 
laid down in a periodic way so as to introduce two periodicities: the lattice perio-
dicity, and the layer periodicity. One can introduce this additional periodicity by 
doping variations or by compositional variations. A particularly interesting type of 
superlattice is the strained layer. This is a superlattice in which the lattice con-
stants do not exactly match. It has been found that one can do this without intro-
ducing defects provided the layers are sufficiently thin. The resulting strain can be 
used to productively modify the energy levels. 

Minibands can appear in a superlattice. These are caused by quantum wells 
with discrete levels that are split into minibands due to tunneling between the 
wells. Some applications of superlattices will be discussed later. For a more quan-
titative discussion of superlattices, see the sections on Envelope Functions, Effec-
tive Mass Theory, Shallow Defects, and Superlattices in Sect. 11.3, and also 
Mendez and Bastard [12.46]. 

 

Δ

Bottom of band Top of band

E  
Fig. 12.8. Miniband “tilted” by electric field, and Bloch oscillations 

Bloch oscillations can occur in minibands. Consider a portion of a miniband 
when it is “tilted” by an electric field as shown in Fig. 12.8. An electron in the 
band will lower its potential energy in the electric field while gaining in kinetic 
energy, and thus, follow a constant energy path from the bottom of the band to the 
top, as illustrated above. For very narrow minibands, there is a good chance it will 
reach the top before phonon emission. In such cases, it could be Bragg reflected. 
Several reflections between the top and bottom could be possible. These are the 
Bragg reflections. 

We can be slightly more quantitative about Bloch oscillations. The equation of 
motion of an electron in a lattice is 

 0,
d
d >−= eeE

t
k= . (12.6) 
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The width of the Brillouin zone associated with the superlattice is 

 
p

K π2= , (12.7) 

where p is the length of the fundamental repeat distance for the superlattice and K 
is thus a reciprocal lattice vector of the superlattice. Integrating (12.6) from one 
side of the zone to the other, we find 

 eEtK −== . (12.8) 

The Bloch frequency for an oscillation corresponding to the time required to cross 
the Brillouin zone boundary is given by 
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In a tight binding approximation, the energy band structure is given by 
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The group velocity can then be calculated by 
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In time zero to t1, the electron moves 

 ∫∫
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Combining (12.12), (12.11), (12.10), (12.9), and (12.6), we find 

 ]1)[cos( 11 −= t
eE
Bx Bω . (12.13) 

The electron oscillates in real space with the Bloch frequency ωB, as expected. 
In a normal material (nonsuperlattice), the band width is much larger than the 
miniband width Δ, so that phonon emission before Bloch oscillations set in is 
overwhelmingly probable. Note that the time required to cross the (superlattice) 
Brillouin zone is also the time required to go from k = 0 to π/p (assuming bottom 
of band is at 0 and top at 2π/p) then be Bragg reflected to –π/p and hence go from 
k = –π/p to 0. So the Bloch oscillation is a complete oscillation of the band to the 
top and back. 

Consider a superlattice of quantum wells producing a narrow miniband. On ap-
plying an electric field, the whole drawing “tilts” producing a set of discrete en-
ergy levels known as a Stark–Wannier Ladder (see Fig. 12.9). The presence of the 
(sufficiently strong) electric field may cause the extended wave functions of the 
miniband to become localized wave functions. If p is the thickness of the period of 
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the superlattice and Δ is the width of the miniband, the Stark–Wannier ladder oc-
curs where |eEp| ≥ Δ. Actual realistic calculation gives a set of sharp resonances 
rather than discrete levels, and the Stark–Wannier ladder has been verified ex-
perimentally. Stark–Wannier ladders were predicted by Wannier [12.64]. See also 
Lyssenko et al [12.45], and [55, p31ff]. 

 
Fig. 12.10. GaAs-GaAlAs superlattice 

Layered structure with miniband formed from energy levels 

E 

Stark-Wannier ladder formed by electric field tilting energy bands 

p

Δ… …

… 

…
 

Fig. 12.9. An applied electric field to a superlattice may create a Stark–Wannier ladder 
when electrons in the discrete levels have no states to easily tunnel to. Only one miniband is 
shown and the tilt is exaggerated 
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12.6.1  Applications of Superlattices and Related Nanostructures (EE) 

High Mobility (EE) 

See Fig. 12.10. Suppose the GaAlAs is heavily donor doped. The donated elec-
trons will fall into the GaAs wells where they would be separated from the impu-
rities (donor ions) that furnished them and could scatter them. Thus, high mobility 
would be created. So, this structure would create high-conductivity semiconduc-
tors. Superlattices were proposed by Esaki and Tsu [12.18]. They have since be-
come a very large part of basic and applied research in solid-state physics. 
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Fig. 12.11. V-I curve showing the peak and valley indicating resonant tunneling for a dou-
ble barrier structure with metals (Fermi energy EF) on each side 

Resonant Tunneling Devices (EE) 

A quantum well is formed by layers of wide-bandgap, narrow-bandgap, and wide-
bandgap semiconductors. Quantum barriers can be formed from narrow-gap, wide 
gap, narrow-gap semiconductors. A resonant tunneling device can be formed by 
surrounding a well with two barriers. Outside the barrier, electrons populate states 
up to the Fermi energy. If a voltage is applied across the device, the (quasi) Fermi 
energy on the input side can be moved until it equals the energy of one of the dis-
crete energies within the well. 

Typically, the current increases with increasing voltage until a match is ob-
tained, and as the voltage is further increased, the current decreases. The decrease 
in current with increasing voltage is called negative differential resistance, which 
can be applied in making high-frequency devices (See Fig. 12.11). See, e.g., 
Beltram and Capasso in Butcher et al [12.6 Chap. 15]. See also Capasso and Datta 
[12.8]. 
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Fig. 12.12. (a) Resonant tunneling through a superlattice with a discrete Stark-Wannier 
“ladder” of states. (b) Resonant tunneling laser (emission a may trigger emission b, etc.). 
Note that in (a) we are considering non radiative transitions while (b) has indicated radia-
tive transitions a and b. Adapted from Capasso F, Science 235, 175 (1987). 

Lasers (EE) 

We start with a superlattice (or at least a multiple quantum well structure) of alter-
nating wide-gap, narrow-gap materials. The quantum wells form where we have 
narrow-gap semiconductors and the electrons settle into discrete ground states in 
the quantum wells. Now, apply an electric field so that the ground state of one 
level is in resonance with the excited state of the next level. One then gets reso-
nant tunneling between these two states. In effect, one can obtain a population 
inversion leading to lasing action (see Fig. 12.12). For further details, discussion 
of relevance of minibands, etc., see Capasso et al [12.9]. Lasers using quantum 
wells are used in compact disk players. 
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Infrared Detectors (EE) 

This can be made similarly to the way the laser is made, except one deals with 
excitations to the conduction band and subsequent collection by the electric field. 
See Fig. 12.13 where the idea is sketched. One assumes the excitation energy is in 
the infrared. 

= ω 

=ω

=ω
 

Fig. 12.13. Infrared photodetector made with quantum wells. As shown, the electrons in the 
wells are excited into the conduction band states and then can be collected and detected. 
Adapted from Capasso and Datta [12.8, p. 81] 

12.7  Classical and Quantum Hall Effect (A) 

12.7.1  Classical Hall Effect – CHE (A) 

The Hall effect has been important for many reasons. For example, in semiconduc-
tors it can be used for determining the sign and the concentration of charge carriers. 
The fractional quantum Hall effect, in terms of basic physics ideas, may be the most 
important discovery in solid-state physics in the last quarter of a century. To start, 
we first reconsider the classical quantum Hall effect for electrons only. 

Let electrons move in the (x,y)-plane with a magnetic field in the z direction 
and an electric field also in the (x,y)-plane. In MKS units and standard notation 
(e > 0) 
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where the term involving the relaxation time τ is due to scattering. The current 
density is given by 

 xx neVJ −= , (12.16) 

 yy neVJ −= , (12.17) 

where n is the number of electrons per unit volume. Letting the dc conductivity be 
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we can write (in the steady state when Fx, Fy = 0 using (12.14)–(12.18)) 
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where ωc = eB/m is the cyclotron frequency and we can show (by (12.18)) 
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The inverse to (12.19) can be written 
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We will use the geometry as shown in Fig. 12.14. We rederive the Hall coeffi-
cient. Setting Jy = 0, then 
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where V = Vx = Jx/ne from (12.16). The Hall coefficient is defined as 
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as usual. The Hall voltage over the length w would then be 

 
ne

wBJwEV x
y =−=H . (12.24) 

The current through the segment of area tw is 

 twJI xx = , (12.25) 

so 
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Fig. 12.14. Schematic diagram of classical Hall effect 

Define na as the number of electrons per unit area (projected into the (x,y)-plane) 
so the Hall voltage can be written 
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The Hall conductance 1/Rxy is 
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Longitudinally over a length L, the voltage change is 
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which we find to be independent of B. This is the usual Drude result. However, 
this result is based on the assumption that all electrons are moving with the same 
velocity. If we allow the electrons to have a distribution of velocities by doing a 
proper Boltzmann equation calculation, we find there is a magnetoresistance ef-
fect. The result is (Blakemore [12.3]). 
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In addition, when band-structure effects are taken into account one finds there also 
may be a magnetoresistance even when J × B = 0. Classically then we predict be-
havior for the Hall effect (with Ix = constant) as shown schematically in Fig. 12.15. 
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Fig. 12.15. Schematic diagram of classical Hall effect behavior. See (12.27) for VH and 
(12.29) for VL 

12.7.2  The Quantum Mechanics of Electrons in a Magnetic Field:  
The Landau Gauge (A) 

We start by solving the problem of electrons moving in two dimensions (x, y) in a 
magnetic field in the z direction (see, e.g., [12.41, 12.51, 12.56, 12.59]). The es-
sential ideas of the quantum Hall effect can be made clear by ignoring electron 
spin, and so we do. The limit to two dimensions is necessary for the quantum Hall 
effect as we will discuss later. The discussion of Landau diamagnetism 
(Sect. 3.2.2) may be helpful here as a review of the quantum mechanics of elec-
trons in magnetic fields. 

For B = Bk, one choice of A is: 

 BrA ×
2
1−= , (12.31) 

which is a cylindrically symmetric gauge. Instead, we use the Landau gauge 
where Ax = −yB, Ay = 0, and Az = 0. This yields a simpler solution for the Hall 
situation that we consider. 

The free-electron Hamiltonian can then be written 

 2][
2
1 Ap q
m

−=H , (12.32) 

where q = −e < 0. In two dimensions this becomes (compare Sect. 3.2.2) 
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Introducing the “magnetic length” 
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we can then write the Schrödinger equation as 
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We seek a solution of the form 
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and thus 
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Since also 
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and from (12.34) and from the preceding equation for lμ, we have 
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This may be recognized as a harmonic oscillator equation with the quantized energies 
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and the eigenfunctions are 
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where the Hn(x) are the Hermite polynomials 

 .etc,24)(,2)(,1)( 2
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For the Hall effect we now solve for the case in which there is also an electric 
field in the y direction (the Hall field). This adds a potential of 
 eEyU = . (12.38) 

The drift velocity in crossed E and B fields is 

 
B
EV = , 
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so by (12.38), the above, and ωc = eB/m 
 VymU cω= . (12.39) 

Thus we can write from (12.38): 
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Now since V is very small, we can neglect terms involving the square of V. Then 
if we define the origin so y = y′ − aV, with a = 1/ωc, the Schrödinger equation 
simplifies to the same form as (12.36): 
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Thus using (12.37) in new notation, 
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and 
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Now let us discuss some qualitative results related to these states. 

12.7.3  Quantum Hall Effect: General Comments (A) 

We first present the basic experimental results of the quantum Hall effect and then 
indicate how it can be explained. We have already described the Hall geometry. 
The Hall resistance is VH/Ix, where Ix may be held constant. The longitudinal resis-
tance is VL/Ix. One finds plateaus at values of (h/e2)/ν with e2/h being called the 
quantum of conductance and ν is an integer for the integer quantum Hall effect 
and a fraction for the fractional quantum Hall effect. 

As shown in Fig. 12.16, VL/Ix appears to be zero when the Hall resistance is on 
a plateau. The figures only schematically illustrate the effect for ν = 2, 1, and 1/3. 
There are many other plateaus, which we have omitted. 

The quantum Hall effect requires two dimensions, low temperatures, electrons, 
and a large external magnetic field. Two dimensions are necessary so the gaps in 
between the Landau levels (Eg = =ωc) are not obliterated by the continuous energy 
introduced by motion in the third dimension. (The IQHE involves filled or empty 
Landau levels. Gaps for the FQHE, which involve partially filled Landau levels, 
are introduced by electron–electron interactions.) Low temperatures are necessary 
so as not to wipe out the quantization of levels by thermal-broadening effects. 
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There are two convenient ways to produce the two dimensional electron sys-
tems (2DES). One way is with MOSFETs. In a MOSFET a positive gate voltage 
can create a 2DES in an inversion region at the Si and SiO2 interface. One can 
also use GaAs and AlGaAs heterostructures with donor doping in the AlGaAs so 
the electrons go to the GaAs region that has lower potential. This separates the 
electrons from the donor impurities and hence the electrons can have high mobil-
ity due to low scattering of them. 

The IQHE was discovered by Klaus von Klitzing in 1980 and for this he was 
awarded the Nobel prize in 1985. About two years later, Stormer and Tsui discov-
ered the FQHE and they along with Laughlin (for theory) were awarded the 1998 
Nobel prize for this effect. 

Qualitatively, the IQHE can be fairly simply explained. As each Landau level 
is filled there is a gap to the next Landau level. The gap is filled by localized non-
conducting states, and as the Fermi level moves through this gap, no change in 
current is observed. The Landau levels themselves are conducting. For the IQHE 
the electron–electron interactions effects are really not important, but the disorder 
that causes the localized states in the gap is crucial. 

The fractional quantum Hall effect occurs for partially filled Landau levels and 
electron–electron interaction effects are crucial. They produce an excitation gap 
reminiscent of the gap produced in the Mott insulating transition. Potential fluc-
tuations cause localized states and plateau formation. 

The Integer Quantum Hall Effect – IQHE–Simple Picture (A) 

We give an elementary picture of the IQHE. We start with four results. 
a. The Landau degeneracy per spin is eB/h. (This follows because the number of 

states per unit area in k-space (ΔA) and in real space is (ΔA)/(2π)2. Then from 
(6.29), (ΔA) = (2π)2(eB/h). Thus, the number of states per unit area in real 
space is nB ≡ eB/h). 

b. The drift velocity perpendicular to E and B field is V = E/B. 
c. Flux quanta have the value Φ0 = h/e (see (8.47)). 
d. The number of filled Landau levels ν = N/NΦ, where N is the number of elec-

trons and NΦ is the number of flux quanta. This follows from ν = N/(eBLw/h) = 
N/(Φ/Φ0). 

 VL/Ix VH/Ix 

B 

ν = 2 

ν = 1 

ν = 1/3 

h/2e2 

h/e2 

3h/e2 FQHE 

IQHE 

FQHE 

a b c d a b c d

 
Fig. 12.16. Schematic diagram of quantum Hall effect behavior 
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Then 
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where n = the number of electrons per unit volume and 
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If B changes, as long as the Fermi level stays in the gap, the Landau levels are 
filled or empty and the current over the voltage remains on a plateau of fixed n. (It 
can be shown that the total current carried by a full Landau level remains constant 
even as the number of electrons that fill it varies with the Landau degeneracy.) 

Incidentally, when 1/Rxy = νe2/h then 1/Rxx = I/VL → ∞ or Rxx → 0. This is be-
cause the electrons in conducting states have no available energy states into which 
they can scatter. 

Fractional Quantum Hall Effect – FQHE (A) 

One needs to think about the FQHE both by thinking about the Laughlin wave 
functions and by thinking of their physical interpretation. For example, for the ν = 
1/3 case with m = 3 (see general comments, next section), the wave function is 
(see [12.41]): 
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where zj = xj +iyj locates the jth electron in 2D. Positive and negative excitations at 
z = z0 are given by (see also [12.59]) 
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For m = 3, these excitations have effective charges of magnitude e/3. The ground 
state of the FQHE is considered to be like an incompressible fluid as the density is 
determined by the magnetic field and is fairly rigidly locked. The papers by 
Laughlin should be consulted for full details. 

These wave functions have led to the idea of composite particles (CPs). Rather 
than considering electrons in 2D in a large magnetic field, it turns out to be possi-
ble to consider an equivalent system of electrons plus attached field vortices (see 
Fig. 16, p. 885 in [12.51]). The attached vortices account for most of the magnetic 
field and the new particles can be viewed as weakly interacting because the vor-
tices minimize the electron–electron interactions. 

General Comments (A) 

It turns out that the composite particles may behave as either bosons or fermions 
according to the number of attached flux quanta. Electrons plus an odd number of 
surrounding flux quanta are Bose CPs and electrons with an even number of at-
tached quanta are Fermi CPs. The ν = 1/3, m = 3 case involves electrons with 
three attached quanta and hence these CPs are bosons that can undergo a Bose–
Einstein-like condensation, produce an energy gap, and have a FQHE with pla-
teaus. For the ν = 1/2 case, there are two attached quanta, the systems behaves as a 
collection of fermions, there is no Bose–Einstein condensation and no FQHE. 

In general, when the magnetic field increases, electrons can “absorb” some 
field and become “anyons.” These can be shown to obey fractional statistics and 
seem to be intermediate between fermions and bosons. This topic takes us too far 
afield and references should be consulted.2 

There are different ways to construct CPs to describe the same physical situa-
tion, but normally one tries to use the simplest. Also, there are still problems con-
nected with the understanding of some values of ν. A complete description would 
take us further than we intend to go, but the chapter references listed at the end of 
this book can be a good starting point for further investigation. 

The quantum Hall effects are very rich in physical effects. So far, they are not 
so rich in applications. However, the experiments do determine e2/h to three parts 
in ten million or better, and hence they provide an excellent resistance standard. 
Also, since the speed of light is a defined quantity, the QHE also determines the 
fine structure constant e2/=c to high accuracy. It is interesting that the quantum 
Hall effect determines e2/h, while we found earlier that e/h could be determined by 
the Josephson effect. Thus the two can be used to determine both e and h indi-
vidually. 

                                                           
2 See Lee [12.43]. 
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12.8  Carbon – Nanotubes and Fullerene Nanotechnology 
(EE) 

Carbon is very versatile and important both to living tissues and to inanimate ma-
terials. Carbon of course forms diamond and graphite. In recent years the ability 
of carbon to aggregate into fullerenes and nanotubes has been much discussed. 

Fullerenes are stable, cage-like molecules of carbon with often a nearly spheri-
cal appearance. A C60 molecule is also called a Buckyball. Both are named after 
Buckminster Fuller because of their resemblance to the geodesic domes he de-
signed. Buckyballs were discovered in 1985 as a byproduct of laser-vaporized 
graphite. Some of the fullerides (salts such as K-C60) can be superconductors (see, 
e.g., Hebard [12.25]). 

Carbon nanotubes are one or more cylindrical and seamless shells of graphitic 
sheets. Their ends are capped by half of a fullerene molecule. They were discov-
ered in 1993 by Sumio Iijima and mass produced in 1995 by Rick Smalley. For 
more details see, e.g., Dresselhaus et al [12.17]. While carbon nanotubes are now 
easy to produce, they are not easy to produce in a controlled fashion. 

To form them, start with a single sheet of graphite called graphene whose band 
structure leads to a semimetal (where the conduction band edge is very close to 
the valence band edge). A picture of the dispersion relations show a two-
dimensional E vs. k relationship where two cones touch at their tips with the same 
conic axis and in an end-to-end fashion. See Fig. 12.17. Where the cones touch is 
the Fermi energy, or as it is called, the Fermi point. 

Nanotubes can be semiconductors or metals. It depends on the boundary condi-
tions on the wave function as determined by how the sheet is rolled up. Both the 
circumference and twist are important. This, in turn, affects whether a bandgap is 
introduced where the Fermi point in graphene was. The semiconducting bandgap 
can be varied by the circumference. Multiwalled nanotubes are more complex. 

Semiconductor nanotubes can be made to act as transistors by using a gate volt-
age. A negative bias (to the gate) induces holes and makes them conduct. Positive 
bias makes the conductance shut off. They have even been made to act as simple 
logic devices. See McEven PL, “Single-Wall Carbon Nanotubes,” Physics World, 
pp. 32-36 (June 2000). One interesting feature about nanotubes is that they provide 
a way around the fundamental size limits of Si devices. This is because they can be 
made very small and are not plagued with surface states (they have no surface 
formed by termination of a 3D structure and as cylinders they have no edges). 

Carbon nanotubes are a fascinating example of one-dimensional transport in 
hopefully easy to make structures. They are quantum wires with ballistic electrons 
– and they show many interesting quantum effects. 

An additional feature of interest is that carbon nanotubes show significant me-
chanical strength. Their strength arises from the carbon bond.3 

                                                           
3  Carbon is becoming an increasingly interesting material with the suggestion that under 

certain circumstances it can even be magnetic. See Coey M and Sanvito S, Physics 
World, Nov 2004, p33ff. 
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Fig. 12.17. Dispersion relation for graphene 

12.9  Amorphous Semiconductors and the Mobility Edge 
(EE) 

By amorphous, we will mean noncrystalline. Here, rather than an energy gap one 
has a mobility gap separating localized and nonlocalized states. The localization 
of electron states is an important concept. The electron–electron interaction itself 
may give rise to localization as shown by Mott [12.48], as we have discussed ear-
lier in the book. In effect, the electron–electron interaction can split the originally 
partially filled band into a filled band and an empty band separated by a bandgap. 
We are more interested here in the Anderson localization transition caused by 
random local field fluctuations due to disorder. In amorphous semiconductors, this 
can lead to “mobility edges” rather than band edges (see Fig. 12.18). 

The dc conductivity of an amorphous semiconductor is of the form 
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for charge transport by extended state carriers, where ΔE is of the order of the 
mobility gap and σ0 is a conductor. For hopping of localized carriers 
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where σ0 and T0 are constants. Memory and switching devices have been made 
with amorphous chalcogenide semiconductors. The meaning of (12.52) is ampli-
fied in the next section. 
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Fig. 12.18. Area of mobility between valence and conduction bands 

12.9.1  Hopping Conductivity (EE) 

So far, we have discussed band conductivity. Here electrons move along at con-
stant energy, in the steady state the energy they gain from the field is dissipated by 
collisions. One can even have band conductivity in impurity bands when the im-
purity wave functions overlap sufficiently to form a band. One usually thinks of 
impurity states as being localized, and for localized states there is no dc conduc-
tivity at absolute zero. However, at nonzero temperatures, an electron in a local-
ized state may make a transition to an empty localized state, getting any necessary 
energy from a phonon, for example. We say the electron hops from state to state. 
In general, then, an electron hop is a transition of the electron involving both its 
position and energy. 

The topic of hopping conductivity is very complicated and a thorough treat-
ment would take us too far afield. The books by Shoklovskii and Efros [12.55], 
and Mott [12.48], together with copious references cited therein, can be consulted. 
In what is given below, we are primarily concerned with hopping conductivity in 
lightly doped semiconductors. 

Suppose the electron jumps to a state a distance R. We assume very low tem-
peratures with the relevant states localized near the Fermi energy. We assume 
states just below the Fermi energy hop to states just above gaining the energy Ea 
(from a phonon). Letting N(E) be the number of states per unit volume, we esti-
mate: 

 )(
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F
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ENR
E

π≈ , (12.53) 

thus we estimate (see Mott [12.48]) the hopping probability and hence the conduc-
tivity is proportional to 

 )/2exp( kTER a−− α , (12.54) 

where α is a constant denoting the rate of exponential decrease of the wave func-
tion of the localized state exp(–αr). 
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Substituting (12.53) into (12.54) and maximizing the expression with regard to 
the hopping range R gives: 

 ])/exp[( 4/1
00 TT−= σσ , (12.55) 

where 

 )(/5.1 3
0 FENT βα= , (12.56) 

and β is a constant, whose value follows from the derivation, but in fact needs to 
be more precisely evaluated in a more rigorous presentation. 

Maximizing also yields 

 4/1)/1(constant TR = , (12.57) 

so the theory is said to be for variable-range hopping (VRH); the lower the tem-
perature, the longer the hopping range and the less energy is involved. 

Equation (12.55), known as Mott’s law, is by no means a universal expression 
for the hopping conductivity. This law may only be true near the Mott transition, 
and even then that is not certain. Electron–electron interactions may cause a Cou-
lomb gap (Coulombic correlations may lead the density of states to vanish at the 
Fermi level), and lead to a different exponent (from one quarter–actually to 1/2 for 
low-temperature VRH). 

12.10  Amorphous Magnets (MET, MS) 

Magnetic effects are typically caused by short-range interactions, and so they are 
preserved in the amorphous state although the Curie temperature is typically low-
ered. A rapid quench of a liquid metallic alloy can produce an amorphous alloy. 
When the alloy is also magnetic, this can produce an amorphous magnet. Such 
amorphous magnets, if isotropic, may have low anisotropy and hence low coer-
civities. An example is Fe80B30, where the boron is used to lower the melting 
point, which makes quenching easier. Transition metal amorphous alloys such as 
Fe75P15C10 may also have very small coercive forces in the amorphous state. 

On the other hand, amorphous NdFe may have a high coercivity if the quench 
is slow so as to yield a multicrystalline material. Rare earth alloys (with transition 
metals) such as TbFe2 in the amorphous state may also have giant coercive fields 
(~ 3 kOe). For further details, see [12.20, 12.26, 12.36]. 

We should mention that bulk amorphous steel has been made. It has approxi-
mately twice the strength of conventional steel. See Lu et al [12.44]. 

Nanomagnetism is also of great importance, but is not discussed here. How-
ever, see the relevant chapter references at the end of this book. 
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12.11  Soft Condensed Matter (MET, MS) 

12.11.1  General Comments 

Soft condensed-matter physics occupies an intermediate place between solids and 
fluids. We can crudely say that soft materials will not hurt your toe if you kick them. 

Generally speaking, hard materials are what solid-state physics discusses and 
the focus of this book was crystalline solids. Another way of contrasting soft and 
hard materials is that soft ones are typically not describable by harmonic excita-
tions about the ground-state equilibrium positions. Soft materials are also often 
complex, as well as flexible. Soft materials have a shape but respond more easily 
to forces than crystalline solids. 

Soft condensed-matter physics concerns itself with liquid crystals and poly-
mers, which we will discuss, and fluids as well as other materials that feel soft. 
Also included under the umbrella of soft condensed matter are colloids, emul-
sions, and membranes. As a reminder, colloids are solutes in a solution where the 
solute clings together to form ‘particles,’ and emulsions are two-phase systems 
with the dissolved phase being minute drops of a liquid. A membrane is a thin, 
flexible sheet that is often a covering tissue. Membranes are two-dimensional 
structures built from molecules with a hydrophilic head and a hydrophobic tail. 
They are important in biology. 

For a more extensive coverage the books by Chaikin and Lubensky [12.11], 
Isihara [12.27], and Jones [12.30] can be consulted. 

We will discuss liquid crystals in the next Section and then we have a Sec-
tion on polymers, including rubbers. 

12.11.2  Liquid Crystals (MET, MS) 

Liquid crystals involve phases that are intermediate between liquids and crystals. 
Because of their intermediate character some call them mesomorphic phases. Liq-
uid crystals consist of highly anisotropic weakly coupled (often rod-like) mole-
cules. They are liquid-like but also have some anisotropy. The anisotropic proper-
ties of some liquid crystals can be changed by an electric field, which affects their 
optical properties, and thus watch displays and screens for computer monitors 
have been developed. J. L. Fergason [12.19] has been one of the pioneers in this 
as well as other applications. 

There are two main classes of liquid crystals: nematic and smectic. In nematic 
liquid crystals the molecules are partly aligned but their position is essentially 
random. In smectic liquid crystals, the molecules are in planes that can slide over 
each other. Nematic and smectic liquid crystals are sketched in Fig. 12.19. An 
associated form of the nematic phase is the cholesteric. Cholesterics have a direc-
tor (which is a unit vector along the average axis of orientation of the rod-like 
molecules) that has a helical twist. 
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Liquid crystals still tend to be somewhat foreign to many physicists because 
they involve organic molecules, polymers, and associated structures. For more 
details see deGennes PG and Prost [12.15] and Isihara [12.27 Chap. 12]. 

 

(a) (b)  
Fig. 12.19. Liquid crystals. (a) Nematic (long-range orientational order but no long-range 
positional order), and (b) Smectic (long-range orientational order and in one dimension 
long-range positional order) 

12.11.3  Polymers and Rubbers (MET, MS) 

Polymers are a classic example of soft condensed matter. In this section, we will 
discuss polymers4 and treat rubber as a particular example. 

A monomer is a simple molecule that can join with itself or similar molecules 
(many times) to form a giant molecule that is referred to as a polymer. (From the 
Greek, polys – many and meros – parts). A polymer may be either naturally occur-
ring or synthetic. The number of repeating units in the polymer is called the de-
gree of polymerization (which is typically of order 103 to 105). Most organic sub-
stances associated with living matter are polymers, thus examples of polymers are 
myriad. Plastics, rubbers, fibers, and adhesives are common examples. Bakelite 
was the first thermosetting plastic found. Rayon, Nylon, and Dacron (polyester) 
are examples of synthetic fibers. There are crystalline polymer fibers such as cel-
lulose (wood is made of cellulose) that diffract X-rays and by contrast there are 
amorphous polymers (rubber can be thought of as made of amorphous polymers) 
that don’t show diffraction peaks. 

There are many subfields of polymers of which rubber is one of the most im-
portant. A rubber consists of many long chains of polymers connected together 
somewhat randomly. The chains themselves are linear and flexible. The random 
linking bonds give shape. Rubbers are like liquids in that they have a well-defined 
volume, but not a well-defined shape. They are like a solid in that they maintain 
their shape in the absence of forces. The most notable property of rubbers is that 

                                                           
4 As an aside we mention the connection of polymers with fuel cells, which have been 

much in the news. In 1839 William R. Grove showed the electrochemical union of hy-
drogen and oxygen generates electricity—the idea of the fuel cell. Hydrogen can be ex-
tracted from say methanol, and stored in, for example, metal hydrides. Fuel cells can run 
as long as hydrogen and oxygen are available. The only waste is water from the fuel-cell 
reaction. In 1960 synthetic polymers were introduced as electrolytes. 
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they have a very long and reversible elasticity. Vulcanizing soft rubber, by adding 
sulfur and heat treatment makes it harder and increases its strength. The sulfur is 
involved in linking the chains. 

A rubber can be made by repetition of the isoprene group (C5H8, see 
Fig. 12.20).5 Because the entropy of a polymer is higher for configurations in 
which the monomers are randomly oriented than for which they are all aligned, 
one can estimate the length of a long linear polymer in solution by a random-walk 
analysis. The result for the overall length is the length of the monomer times the 
square root of their number (see below). The radius of a polymer in a ball is given 
by a similar law. More complicated analysis treats the problem as a self-avoiding 
random walk and leads to improved results (such as the radius of the ball being 
approximately the length of the monomer times their number to the 3/5 power). 
Another important feature of polymers is their viscosity and diffusion. The con-
cept of reptation (which we will not discuss here, see Doi and Edwards [12.16]), 
which means snaking, has proved to be very important. It helps explain how one 
polymer can diffuse through the mass of the others in a melt. One thinks of the 
Brownian motion of a molecule along its length as aiding in disentangling the 
polymer. 

CH2 CH2C[

CH3 

CH ]  
Fig. 12.20. Chemical structure of isoprene (the basic unit for natural rubber) 

We first give a one-dimensional model to illustrate how the length of a polymer 
can be estimated from a random-walk analysis. We will then discuss a model for 
estimating the elastic constant of a rubber. 

We suppose N monomers of length a linked together along the x-axis. We suppose 
the ith monomer to be in the +x direction with probability of 1/2 and in the −x direction 
with the same probability. The rms length R of the polymer is calculated below. 

Let xi = a for the monomer in the +x direction and −a for the −x direction. Then 
the total length is x = ∑xi and the average squared length is 

 ∑∑ == 222
ii xxx , (12.58) 

since the cross terms drop out, so 

 22 Nax = , (12.59) 

or 

 NaR = . (12.60) 

                                                           
5 See, e.g., Brown et al [12.4]. See also Strobl [12.57]. 



12.11 Soft Condensed Matter (MET, MS)      643 

 

We have already noted that a similar scaling law applies to the radius of a N-
monomer polymer coiled in a ball in three dimensions. 

In a similar way, we can estimate the tension in the polymer. This model or 
generalizations of it to two or three dimensions (See, e.g., Callen [12.7]) seem to 
give the basic idea. Let n+ and n− represent the links in the + and − directions. The 
length x is 

 annx )( −+ −= , (12.61) 

and the total number of monomers is 

 )( −+ += nnN . (12.62) 

Thus 
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The number of ways we can arrange N monomers with n+ in the +x direction and 
n− in the − direction is 

 .
!!

!
−+=

nn
NW  (12.64) 

Using S = kln(W) and using Stirling’s approximation, we can find the entropy S. 
Then since dU = TdS + Fdx, where T is the temperature, U the internal energy and 
F the tension, we find 

 
x
U

x
STF

∂
∂+

∂
∂−= , (12.65) 

so we find (assuming we use a model in which ∂U/∂x can be neglected) 
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The tension F comes out to be proportional to both the temperature and the exten-
sion x (it becomes stiffer as the temperature is raised!). Another way to look at this 
is that the polymer contracts on warming. In 3D, we think of the polymer curling 
up at high temperatures and the entropy increasing. 
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Problems 

12.1 If the periodicity p = 50 Å and E = 5×104 V/cm, calculate the fundamental 
frequency for Bloch oscillations. Compare the results to relaxation times τ 
typical for electrons, i.e. compute ωBτ. 

12.2 Find the minimum radius of a spherical quantum dot whose electron binding 
energy is at least 1 eV. 

12.3 Discuss how the Kronig–Penny model can be used to help understand the 
motion of electrons in superlattices. Discuss both transverse and in-plane 
motion. See, e.g., Mitin et al [12.47 pp. 99-106]. 

12.4 Consider a quantum well parallel to the (x,y)-plane of width w in the z direc-
tion. For simplicity assume the depth of the quantum well is infinite. As-
sume also for simplicity that the effective mass is a constant m for motion in 
all directions, See, e.g., Shik [12.54, Chaps. 2 and 4] . 

a) Show the energy of an electron can be written 

 )(
22

22
2

2

222

yx kk
mmw

nE ++= == π , 

where px = =kx and py = =ky and n is an integer. 

b) Show the density of states can be written 

 ∑ −= n nEEmED )()( 2 θ
π =

, 

where D(E) represents the number of states per unit area per unit energy in 
the (x,y)-plane and 

 2
2

22

2
n

mw
En

π== . 

θ(x) is the step function θ(x) = 0 for x < 0 and = 1 for x > 0. 

c) Show also D(E) at E >~   E3 is the same as D3D(E) where D3D represents the 
density of states in 3D without the quantum well (still per unit area in the 
(x,y)-plane for a width w in the z direction) 

d) Make a sketch showing the results of b) and c) in graphic form. 

12.5 For the situation of Problem 12.4 impose a magnetic field B in the z direc-
tion. Show then that the allowed energies are discrete with values 

 ⎟
⎠
⎞

⎜
⎝
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, p
mw

nE cpn ωπ == , 
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where n, p are integers and ωc = |eB/m| is the cyclotron frequency. Show 
also the two-dimensional density of states per spin (and per unit energy and 
area in (x,y)-plane) is 

 ∑ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−= p pE

h
eBED

2
1)( ωδ = , 

when 

 2

22

2

22

2
4

2 mw
E

mw
ππ == << . 

These results are applicable to a 2D Fermi gas, see, e.g., Shik [12.54, Chaps. 7] 
as well as 12.7.2 and 12.7.3. 



 

 

Appendices 

A  Units 

The choice of a system of units to use is sometimes regarded as an emotionally 
charged subject. Although there are many exceptions, experimental papers often 
use mksa (or SI) units, and theoretical papers may use Gaussian units (or perhaps 
a system in which several fundamental constants are set equal to one). 

All theories of physics must be checked by comparison to experiment before 
they can be accepted. For this reason, it is convenient to express final equations in 
the mksa system. Of course, much of the older literature is still in Gaussian units, 
so one must have some familiarity with it. The main thing to do is to settle on a 
system of units and stick to it. Anyone who has reached the graduate level in 
physics can convert units whenever needed. It just may take a little longer than we 
wish to spend. 

In this appendix, no description of the mksa system will be made. An adequate 
description can be found in practically any sophomore physics book.1 

In solid-state physics, another unit system is often convenient. These units are 
called Hartree atomic units. Let e be the charge on the electron, and m be the mass 
of the electron. The easiest way to get the Hartree system of units is to start from 
the Gaussian (cgs) formulas, and let |e| = Bohr radius of hydrogen = |m| = 1. The 
results are summarized in Table A.1. The Hartree unit of energy is 27.2 eV. Ex-
pressing your answer in terms of the fundamental physical quantities shown in 
Table A.1 and then using Hartree atomic units leads to simple numerical answers 
for solid-state quantities. In such units, the solid-state quantities usually do not 
differ by too many orders of magnitude from one. 
 

                                                           
1 Or see “Guide for Metric Practice,” by Robert A. Nelson at 

http://www.physicstoday.org/guide/metric.html. 
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Table A.1. Fundamental physical quantities* 

Quantity Symbol Expression / value in 
mksa units 

Expression / value in 
Gaussian units 

Value in Hartree 
units 

Charge on 
electron 

e 1.6 × 10−19 coulomb 4.80 × 10−10 esu 1 

Mass of elec-
tron 

m 0.91 × 10−30 kg 0.91 × 10−27 g 1 

Planck’s con-
stant 

= 1.054 × 10−34 joule s 1.054 × 10−27 erg s 1 

Compton 
wavelength of 
electron 

λc 2π(=/mc) 
2.43 × 10−12 m 

2π(=/mc) 
2.43 × 10−10 cm 

(2π) 137
1  

Bohr radius of 
hydrogen 

a0 4πε0=2/me2 
0.53 × 10−10 m 

=2/me2 
0.53 × 10−8 cm 

1 

Fine structure 
constant 

α e2/=c 

137
1 (approx.) 

e2/=c 

137
1  

137
1  

Speed of light c 3 × 108 m s−1 3 × 1010 cm s−1 137 

Classical 
electron ra-
dius 

r0 e2/4πε0mc2 
2.82 × 10−15 m 

e2/mc2 
2.82 × 10−13 cm 

2
137

1 )(  

Energy of 
ground state 
of hydrogen 
(1 Rydberg) 

E0 e4m/32(πε0=)2 

13.61† eV 
me4/2=2 

13.61† eV 
2
1  

Bohr magne-
ton (calcu-
lated from 
above) 

μB e=/2m 
0.927 × 10−23 
amp meter2 

e=/2mc 
0.927 × 10−20 
erg gauss−1 

274
1  

Cyclotron 
frequency 
(calculated 
from above) 

ωc, or 
ωh 

(μ0e/2m)(2H) (e/2mc)(2H) 
274
1 (2H) 

* The values given are greatly rounded off from the standard values. The list of fundamen-
tal constants has been updated and published yearly in part B of the August issue of Phys-
ics Today. See, e.g., Peter J. Mohr and Barry N. Taylor, “The Fundamental Physical Con-
stants,” Physics Today, pp. BG6-BG13, August, 2003. Now see 
http://www.physicstoday.org/guide/fundcon.html. 
† 1 eV = 1.6 × 10−12 erg = 1.6 × 10−19 joule. 
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B Normal Coordinates 

The main purpose of this appendix is to review clearly how the normal coordinate 
transformation arises, and how it leads to a diagonalization of the Hamiltonian. 
Our development will be made for classical systems, but a similar development 
can be made for quantum systems. An interesting discussion of normal modes has 
been given by Starzak.2 The use of normal coordinates is important for collective 
excitations such as encountered in the discussion of lattice vibrations. 

We will assume that our mechanical system is described by the Hamiltonian 

 ∑ += ji jiijijji xxxx,2
1 )( υδ��H . (B.1) 

In (B.1) the first term is the kinetic energy and the second term is the potential 
energy of interaction among the particles. We consider only the case that each 
particle has the same mass that has been set equal to one. In (B.1) it is also as-
sumed that υij = υji; and that each of the υij is real. The coordinates xi in (B.2) are 
measured from equilibrium that is assumed to be stable. For a system of N parti-
cles in three dimensions, one would need 3N xi to describe the vibration of the 
system. The dot of x·  i  of course means differentiation with respect to time, x·  i  = 
dxi/dt. 

The Hamiltonian (B.1) implies the following equation of motion for the me-
chanical system: 

 0)( =+∑ j jijjij xx υδ �� . (B.2) 

The normal coordinate transformation is the transformation that takes us from 
the coordinates xi to the normal coordinates. A normal coordinate describes the 
motion of the system in a normal mode. In a normal mode each of the coordinates 
vibrates with the same frequency. Seeking a normal mode solution is equivalent to 
seeking solutions of the form 

 t
jj cax ωie−= . (B.3) 

In (B.3), c is a constant that is usually selected so that ∑j|xj|2 = 1, and |caj| is the 
amplitude of vibration of xj in the mode with frequency ω. The different frequen-
cies ω for the different normal modes are yet to be determined. 

Equation (B.2) has solutions of the form (B.3) provided that 

 0)( 2 =−∑ j jijjij aa δωυ . (B.4) 

Equation (B.4) has nontrivial solutions for the aj (i.e. solutions in which all the aj 
do not vanish) provided that the determinant of the coefficient matrix of the aj 
vanishes. This condition determines the different frequencies corresponding to the 
different normal modes of the mechanical system. If V is the matrix whose  

                                                           
2 See Starzak [A.25 Chap. 5]. 
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elements are given by υij (in the usual notation), then the eigenvalues of V are ω2, 
determined by (B.4). V is a real symmetric matrix; hence it is Hermitian; hence 
its eigenvalues must be real. 

Let us suppose that the eigenvalues ω2 determined by (B.4) are denoted by Ωk. 
There will be the same number of eigenvalues as there are coordinates xi. Let ajk 
be the value of aj, which has a normalization determined by (B.7), when the sys-
tem is in the mode corresponding to the kth eigenvalue Ωk. In this situation we can 
write 

 ∑∑ = j jkijkj jkij aa δΩυ . (B.5) 

Let A stand for the matrix with elements ajk and Ω be the matrix with elements Ωlk 
= Ωkδlk. Since Ωk∑jδijajk = Ωkaik = aikΩk = ∑lailΩkδlk = ∑lailΩlk, we can write (B.5) 
in matrix notation as 

 ΩAVA = . (B.6) 

It can be shown [2] that the matrix A that is constructed from the eigenvectors is 
an orthogonal matrix, so that 

 IAAAA == ~~ . (B.7) 

Ã means the transpose of A. Combining (B.6) and (B.7) we have 

 Ω=VAA~ . (B.8) 

This equation shows how V is diagonalized by the use of the matrix that is con-
structed from the eigenvectors. 

We still must indicate how the new eigenvectors are related to the old coordi-
nates. If a column matrix a is constructed from the aj as defined by (B.3), then the 
eigenvectors E (also a column vector, each element of which is an eigenvector) 
are defined by 

 aAE ~= , (B.9a) 

or 

 AEa = . (B.9b) 

That (B.9) does define the eigenvectors is easy to see because substituting (B.9b) 
into the Hamiltonian reduces the Hamiltonian to diagonal form. The kinetic en-
ergy is already diagonal, so we need consider only the potential energy 
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which tells us that the substitution reduces V to diagonal form. For our purposes, 
the essential thing is to notice that a substitution of the form (B.9) reduces the 
Hamiltonian to a much simpler form. 
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An example should clarify these ideas. Suppose the eigenvalue condition 
yielded 

 0
32

21det 2

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

ω
ω . (B.10) 

This implies the two eigenvalues 

 522
1 +=ω  (B.11a) 

 522
2 −=ω . (B.11b) 

Equation (B.4) for each of the eigenvalues gives for 
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and for 
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From (B.12) we then obtain the matrix A 
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where 
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The normal coordinates of this system are given by 
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Problems 

B.1 Show that (B.13) satisfies (B.7) 

B.2 Show for A defined by (B.13) that 

 ⎟
⎟
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32
21~ AA . 

 This result checks (B.8). 

C  Derivations of Bloch’s Theorem 

Bloch’s theorem concerns itself with the classifications of eigenfunctions and ei-
genvalues of Schrödinger-like equations with a periodic potential. It applies 
equally well to electrons or lattice vibrations. In fact, Bloch’s theorem holds for 
any wave going through a periodic structure. We start with a simple one-
dimensional derivation. 

C.1  Simple One-Dimensional Derivation3–5 

This derivation is particularly applicable to the Kronig–Penney model. We will 
write the Schrödinger wave equation as 

 0)()(
d

)(d
2

2
=+ xxU

x
x ψψ , (C.1) 

where U(x) is periodic with period a, i.e., 

 )()( xUnaxU =+ , (C.2) 

with n an integer. Equation (C.1) is a second-order differential equation, so that 
there are two linearly independent solutions ψ1 and ψ2: 

 011 =+′′ ψψ U , (C.3) 

 022 =+′′ ψψ U . (C.4) 

                                                           
3 See Ashcroft and Mermin [A.3]. 
4 See Jones [A.10]. 
5 See Dekker [A.4]. 
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From (C.3) and (C.4) we can write 

 01212 =+′′ ψψψψ U , 

 02121 =+′′ ψψψψ U . 

Subtracting these last two equations, we obtain 

 02112 =′′−′′ ψψψψ . (C.5) 

This last equation is equivalent to writing 

 0
d

d =
x

W , (C.6) 

where 

 
21

21
ψψ
ψψ

′′
=W  (C.7) 

is called the Wronskian. For linearly independent solutions, the Wronskian is a 
constant not equal to zero. 

It is easy to prove one result from the periodicity of the potential. By dummy 
variable change (x) → (x + a) in (C.1) we can write 

 0)()(
d

)(d
2

2
=++++ axaxU

x
ax ψψ . 

The periodicity of the potential implies 

 0)()(
d

)(d
2

2
=+++ axxU

x
ax ψψ . (C.8) 

Equations (C.1) and (C.8) imply that if ψ(x) is a solution, then so is ψ(x + a). 
Since there are only two linearly independent solutions ψ1 and ψ2, we can write 

 )()()( 211 xBxAax ψψψ +=+  (C.9) 

 )()()( 212 xDxCax ψψψ +=+ . (C.10) 

The Wronskian W is a constant ≠ 0, so W(x + a) = W(x), and we can write 
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or 

 1=− BCAD . (C.11) 

We can now prove that it is possible to choose solutions ψ(x) so that 

 )()( xΔax ψψ =+ , (C.12) 

where Δ is a constant ≠ 0. We want ψ(x) to be a solution so that 

 )()()( 21 xxx βψαψψ += , (C.13a) 

or 

 )()()( 21 axaxax +++=+ βψαψψ . (C.13b) 

Using (C.9), (C.10), (C.12), and (C.13), we can write 

 ).()(
)()()()()(

21
21

xx
xDBxCAax

βψΔαψΔ
ψβαψβαψ

+=
+++=+  (C.14) 

In other words, we have a solution of the form (C.12), provided that 

 αΔβα =+ CA , 

and 

 βΔβα =+ DB . 

For nontrivial solutions for α and β, we must have 

 0=
−

−
Δ

Δ
DB

CA
. (C.15) 

Equation (C.15) is equivalent to, using (C.11), 

 DA +=+ −1ΔΔ . (C.16) 

If we let Δ+ and Δ− be the eigenvalues of the matrix ( A
B   

C
D  ) and use the fact that the 

trace of a matrix is the sum of the eigenvalues, then we readily find from (C.16) 
and the trace condition 

 DA +=+ −
++

1)(ΔΔ , 

 DA +=+ −
−−

1)(ΔΔ , (C.17) 

and 

 DA +=+ −+ ΔΔ . 
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Equations (C.17) imply that we can write 

 1)( −
−+ = ΔΔ . (C.18) 

If we set 

 be=+Δ , (C.19) 

and 

 b−
− = eΔ , (C.20) 

the above implies that we can find linearly independent solutions ψi
1  that satisfy 

 )()( 1
1

1
1 xeax bψψ =+ , (C.21) 

and 

 )()( 1
2

1
2 xeax bψψ −=+ . (C.22) 

Real b is ruled out for finite wave functions (as x → ± ∞ ), so we can write b = 
ika, where k is real. Dropping the superscripts, we can write 

 )(e)( i xax kaψψ ±=+ . (C.23) 

Finally, we note that if 

 )(e)( i xux kx=ψ , (C.24) 

where 

 )()( xuaxu =+ , (C.25) 

then (C.23) is satisfied. (C.23) or (C.24), and (C.25) are different forms of Bloch’s 
theorem. 

C.2  Simple Derivation in Three Dimensions 

Let 

 )()( 11 NN xxExx "" ψψ =H  (C.26) 

be the usual Schrödinger wave equation. Let Tl be a translation operator that trans-
lates the lattice by l1a1 + l2a2 + l3a3, where the li are integers and the ai are the 
primitive translation vectors of the lattice. 

Since the Hamiltonian is invariant with respect to translations by Tl, we have 

 0],[ =lTH , (C.27) 
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and 

 0],[ =′ll TT . (C.28) 

Now we know that we can always find simultaneous eigenfunctions of com-
muting observables. Observables are represented by Hermitian operators. The Tl 
are unitary. Fortunately, the same theorem applies to them (we shall not prove this 
here). Thus we can write 

 ll ,, EE Eψψ =H , (C.29) 

 llll ,, EE tT ψψ = . (C.30) 

Now certainly we can find a vector k such that 

 lk·
l

ie=t . (C.31) 

Further 

 , d)(d)(d)( 222
space all

2
∫∫∫ =+= τψτψτψ rlrr lt  

so that 

 12 =lt . (C.32) 

This implies that k must be a vector over the real field. 
We thus arrive at Bloch’s theorem 

 )(e)()( i rlrr lk·
l ψψψ =+=T . (C.33) 

The theorem says we can always choose the eigenfunctions to satisfy (C.33). It 
does not say the eigenfunction must be of this form. If periodic boundary condi-
tions are applied, the usual restrictions on the k are obtained. 

C.3  Derivation of Bloch’s Theorem by Group Theory 

The derivation here is relatively easy once the appropriate group theoretic knowl-
edge is acquired. We have already discussed in Chaps. 1 and 7 the needed results 
from group theory. We simply collect together here the needed facts to establish 
Bloch’s theorem. 

1. It is clear that the group of the Tl is abelian (i.e. all the Tl commute). 

2. In an abelian group each element forms a class by itself. Therefore the number 
of classes is O(G), the order of the group. 

3. The number of irreducible representations (of dimension ni) is the number of 
classes. 



Density Matrices and Thermodynamics      657 

 

4. ∑ni
2  = O(G) and thus by above 

 )(02
)(0

2
2

2
1 Gnnn G =+++ " . 

This can be satisfied only if each ni = 1. Thus the dimensions of the irreducible 
representations of the Tl are all one. 

5. In general 

 ∑= j
k
j

kl
ij

k
il AT ψψ , , 

where the Ai
l   ,

j
k  are the matrix elements of the Tl for the kth representation and the 

sum over j goes over the dimensionality of the kth representation. The ψi
k  are the 

basis functions selected as eigenfunctions of H (which is possible since [H, Tl] = 
0). In our case the sum over j is not necessary and so 

 kklkl AT ψψ ,= . 

As before, the Al,k can be chosen to be eil·k. Also in one dimension we could use 
the fact that {Tl} is a cyclic group so that the Al,k are automatically the roots of 
one. 

D  Density Matrices and Thermodynamics 

A few results will be collected here. The proofs of these results can be found in 
any of several books on statistical mechanics. 

If ψi(x, t) is the wave function of system (in an ensemble of N systems where 
1 ≤ i ≤ N) and if |n〉 is a complete orthonormal set, then 

 ntctx n
i
n

i ∑= )(),(ψ . 

The density matrix is defined by 

 nm
N
i

i
m

i
mnm cctctc

N
∗

=
∗ ≡= ∑ 1 )()(1ρ . 

It has the following properties: 

 1)( =≡ ∑n nnTr ρρ , 

the ensemble average (denoted by a bar) of the quantum-mechanical expectation 
value of an operator A is 

 )( ATrA ρ≡ , 
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and the equation of motion of the density operator ρ is given by 

 ],[i H
t

ρρ =
∂
∂− = , 

where the density operator is defined in such a way that 〈n|ρ|m〉 ≡ ρnm. For a ca-
nonical ensemble in equilibrium 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

kT
HFexpρ . 

Thus we can readily link the idea of a density matrix to thermodynamics and 
hence to measurable quantities. For example, the internal energy for a system in 
equilibrium is given by 

 
)]/[exp(
)]/exp([exp

kTHTr
kTHHTr

kT
HFHTrHU

−
−=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −== . 

Alternatively, the internal energy can be calculated from the free energy F where 
for a system in equilibrium, 

 )]/[exp(ln kTHTrkTF −−= . 

It is fairly common to leave the bar off 〈Ā  〉 so long as the meaning is clear. For 
further properties and references see Patterson [A.19], see also Huang [A.8]. 

E  Time-Dependent Perturbation Theory 

A common problem in solid-state physics (as in other areas of physics) is to find 
the transition rate between energy levels of a system induced by a small time-
dependent perturbation. More precisely, we want to be able to calculate the time 
development of a system described by a Hamiltonian that has a small time-
dependent part. This is a standard problem in quantum mechanics and is solved by 
the time-dependent perturbation theory. However, since there are many different 
aspects of time-dependent perturbation theory, it seems appropriate to give a brief 
review without derivations. For further details any good quantum mechanics book 
such as Merzbacher6 can be consulted. 

                                                           
6 See Merzbacher [A.15 Chap. 18]. 
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Fig. E.1. f(t, ω) versus ω. The area under the curve is 2πt 
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00
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In first order in V, for V turned on at t = 0 and constant otherwise, the probability 
per unit time of a discrete i → f transition for t > 0 is 

 )(2 002
fififi EEVP −≅→ δπ

=
. (E.5) 

In deriving (E.5) we have assumed that the f (t, ω) in Fig. E.1 can be replaced by a 
Dirac delta function via the equation 

 2
00

2 2
),()(

)(

)cos(1
lim

===
ωδπ

ω

ω tfEEtt
fi

if

if

t
=−=

−
∞→

. (E.6) 

If we have transitions to a group of states with final density of states pf(Ef), a simi-
lar calculation gives 

 )(2 2
fffifi EpVP

=
π=→ . (E.7) 

In the same approximation, if we deal with periodic perturbations represented by 

 tt ggtV ωω i†i ee)( −+= , (E.8) 
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which are turned on at t = 0, we obtain for transitions between discrete states 

 )(2 002
ωδπ =

=
±−=→ fififi EEgP . (E.9) 

In the text, we have loosely referred to (E.5), (E.7), or (E.9) as the Golden rule 
(according to which is appropriate to the physical situation). 

F  Derivation of The Spin-Orbit Term From Dirac’s Equation 

In this appendix we will indicate how the concepts of spin and spin-orbit interac-
tion are introduced by use of Dirac’s relativistic theory of the electron. For further 
details, any good quantum mechanics text such as that of Merzbacher7, or Schiff8 
can be consulted. We will discuss Dirac’s equation only for fields described by a 
potential V. For this situation, Dirac’s equation can be written 

 ψψβ EVcmc =++ ])([ 2
0pα ⋅ . (F.1) 

In (F.1), c is the speed of light, α and β are 4 × 4 matrices defined below, p is the 
momentum operator, m0 is the rest mass of the electron, ψ is a four-component 
column matrix (each element of this matrix may be a function of the spatial posi-
tion of the electron), and E is the total energy of the electron (including the rest 
mass energy that is m0c2). The α matrices are defined by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
0
σ

σ
α , (F.2) 

where the three components of σ are the 2 × 2 Pauli spin matrices. The definition 
of β is 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
I

I
0

0
β , (F.3) 

where I is a 2 × 2 unit matrix. 
For solid-state purposes we are not concerned with the fully relativistic equa-

tion (F.1), but rather we are concerned with the relativistic corrections that (F.1) 
predicts should be made to the nonrelativistic Schrödinger equation. That is, we 
want to consider the Dirac equation for the electron in the small velocity limit. 
More precisely, we will consider the limit of (F.1) when 

 1
2

)(
2

0

2
0 <<

−−
≡

cm
VcmEε , (F.4) 

                                                           
7 See Merzbacher [A.15 Chap. 23]. 
8 See Schiff [A.23]. 
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and we want results that are valid to first order in ε, i.e. first-order corrections to 
the completely nonrelativistic limit. To do this, it is convenient to make the fol-
lowing definitions: 

 2
0cmEE +′= , (F.5) 

and 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

φ
χ

ψ , (F.6) 

where both χ and φ are two-component wave functions. 
If we substitute (F.5) and (F.6) into (F.1), we obtain an equation for both χ and 

φ. We can combine these two equations into a single equation for χ in which φ 
does not appear. We can then use the small velocity limit (F.4) together with sev-
eral properties of the Pauli spin matrices to obtain the Schrödinger equation with 
relativistic corrections 

χχ ⋅×∇⋅∇⋅∇
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+−=′ ))((
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p

m
pE == . (F.7) 

This is the form that is appropriate to use in solid-state physics calculations. The 
term 

 ])[(
4 22

0

2
pσ ×∇⋅ V

cm
=  (F.8) 

is called the spin-orbit term. This term is often used by itself as a first-order cor-
rection to the nonrelativistic Schrödinger equation. The spin-orbit correction is 
often applied in band-structure calculations at certain points in the Brillouin zone 
where bands come together. In the case in which the potential is spherically sym-
metric (which is important for atomic potentials but not crystalline potentials), the 
spin-orbit term can be cast into the more familiar form 

 SL  · 
d
d1

2 22
0

2

r
V

rcm
= , (F.9) 

where L is the orbital angular momentum operator and S is the spin operator (in 
units of =). 

It is also interesting to see how Dirac’s theory works out in the (completely) 
nonrelativistic limit when an external magnetic field B is present. In this case the 
magnetic moment of the electron is introduced by the term involving S · B. This 
term automatically appears from the nonrelativistic limit of Dirac’s equation. In 
addition, the correct ratio of magnetic moment to spin angular momentum is ob-
tained in this way. 
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G  The Second Quantization Notation for Fermions 
and Bosons 

When the second quantization notation is used in a nonrelativistic context it is 
simply a notation in which we express the wave functions in occupation-number 
space and the operators as operators on occupation number space. It is of course 
of great utility in considering the many-body problem. In this formalism, the 
symmetry or antisymmetry of the wave functions is automatically built into the 
formalism. In relativistic physics, annihilation and creation operators (which are 
the basic operators of the second quantization notation) have physical meaning. 
However, we will apply the second quantization notation only in nonrelativistic 
situations. No derivations will be made in this section. (The appropriate results 
will just be concisely written down.) There are many good treatments of the sec-
ond quantization or occupation number formalism. One of the most accessible is 
by Mattuck.9 

G.1  Bose Particles 

For Bose particles we deal with bi and bi
† operators (or other letters where conven-

ient): bi
† creates a Bose particle in the state i; bi annihilates a Bose particle in the 

state f. The bi operators obey the following commutation relations: 

 

.],[

,0],[

,0],[

†

††

ijji
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ijjiji
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bbbbbb

δ=

=

=−≡

 

The occupation number operator whose eigenvalues are the number of particles 
in state i is 

 †
i i in b b= , 

and 

 †1 iii bbn =+ . 

The effect of these operators acting on different occupation number kets is 

 
,,1,,1,,,

,,1,,,,,

11
†

11

…………

…………

++=

−=

iiii

iiii

nnnnnb

nnnnnb
 

where |n1,…,ni,…〉 means the ket appropriate to the state with n1 particles in state 
1, n2 particles in state 2, and so on. 

                                                           
9 See Mattuck [A.14]. 



The Second Quantization Notation for Fermions and Bosons      663 

 

The matrix elements of these operators are given by 

 
.1

,1
†

iiii

iiii

nnbn

nnbn

=−

=−
 

In this notation, any one-particle operator 

 ∑= l lop ff )()1()1( r  

can be written in the form 

 ∑= ki kiop bbkfif ,
†)1()1( , 

and the |k〉 are any complete set of one-particle eigenstates. 
In a similar fashion any two-particle operator 

 ∑ −= ml mlop ff ,
)2()2( )( rr  

can be written in the form 

 ∑= mlki lmkiop bbbbmlfkif ,,,
††)2()2( )2()1()2()1( . 

Operators that create or destroy base particles at a given point in space (rather 
than in a given state) are given by 
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bu
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where uα(r) is the single-particle wave function corresponding to state α. In gen-
eral, r would refer to both space and spin variables. These operators obey the 
commutation relation 

 )()](),([ † rrrr ′−= δψψ . 

G.2  Fermi Particles 

For Fermi particles, we deal with ai and ai
† operators (or other letters where con-

venient): ai
† creates a fermion in the state i; ai annihilates a fermion in the state i. 

The ai operators obey the following anticommutation relations: 
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The occupation number operator whose eigenvalues are the number of particles 
in state i is 

 iii aan †= , 

and 

 †1 iii aan =− . 

Note that (ni)2 = ni, so that the only possible eigenvalues of ni are 0 and 1 (the 
Pauli principle is built in!). 

The matrix elements of these operators are defined by 

 ∑ −−=== )1,1()(10 i
iii nan """" , 

and 

 ∑ −−=== )1,1(† )(01 i
iii nan """" , 

where ∑(1,i − 1) equals the sum of the occupation numbers of the states from 1 to 
i − 1. 

In this notation, any one-particle operator can be written in the form 

 ∑= ji ji aajfif ,
†)1()1(

0 , 

where the |j〉 are any complete set of one-particle eigenstates. In a similar fashion, 
any two-particle operator can be written in the form 

 ∑= lkji lkijop aaaalkfjif ,,,
††)2()2( )2()1()2()1( . 

Operators that create or destroy Fermi particles at a given point in space (rather 
than in a given state) are given by 

 ∑= α ααψ au )()( rr , 

where uα(r) is the single-particle wave function corresponding to state α, and 

 ∑ ∗= α ααψ †† )()( au rr . 

These operators obey the anticommutation relations 

 )()}(),({ † rrrr ′−= δψψ . 

The operators also allow a convenient way of writing Slater determinants, e.g., 

 
)2()1(
)2()1(

2
10††

ββ

αα
βα uu

uu
aa ↔ ; 

|0〉 is known as the vacuum ket. 
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The easiest way to see that the second quantization notation is consistent is to 
show that matrix elements in the second quantization notation have the same val-
ues as corresponding matrix elements in the old notation. This demonstration will 
not be done here. 

H  The Many-Body Problem 

Richard P. Feynman is famous for many things, among which is the invention, in 
effect, of a new quantum mechanics. Or maybe we should say of a new way of 
looking at quantum mechanics. His way involves taking a process going from A to 
B and looking at all possible paths. He then sums the amplitude of the all paths 
from A to B to find, by the square, the probability of the process. 

Related to this is a diagram that defines a process and that contains by implica-
tion all the paths, as calculated by appropriate integrals. Going further, one looks 
at all processes of a certain class, and sums up all diagrams (if possible) belonging 
to this class. Ideally (but seldom actually) one eventually treats all classes, and 
hence arrives at an exact description of the interaction. 

Thus, in principle, there is not so much to treating interactions by the use of 
Feynman diagrams. The devil is in the details, however. Certain sums may well be 
infinite–although hopefully disposable by renormalization. Usually doing a non-
trivial calculation of this type is a great technical feat. 

We have found that a common way we use Feynman diagrams is to help us un-
derstand what we mean by a given approximation. We will note below, for exam-
ple, that the Hartree approximation involves summing a certain class of diagrams, 
while the Hartree–Fock approximation involves summing these diagrams along 
with another class. We believe, the diagrams give us a very precise idea of what 
these approximations do. 

Similarly, the diagram expansion can be a useful way to understand why a per-
turbation expansion does not work in explaining superconductivity, as well as a 
way to fix it (the Nambu formalism). 

The practical use of diagrams, and diagram summation, may involve great prac-
tical skill, but it seems that the great utility of the diagram approach is in clearly 
stating, and in keeping track of, what we are doing in a given approximation. 

One should not think that an expertise in the technicalities of Feynman diagrams 
solves all problems. Diagrams have to be summed and integrals still have to be 
done. For some aspects of many-electron physics, density functional theory (DFT) 
has become the standard approach. Diagrams are usually not used at the beginning 
of DFT, but even here they may often be helpful in discussing some aspects. 

DFT was discussed in Chap. 3, and we briefly review it here, because of its 
great practical importance in the many-electron problem of solid-state physics. In 
the beginning of DFT Hohenberg and Kohn showed that the N-electron 
Schrödinger wave equation in three dimensions could be recast. They showed that 
an equation for the electron density in three dimensions would suffice to deter-
mine ground-state properties. The Hohenberg–Kohn formulation may be regarded 
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as a generalization of the Thomas–Fermi approximation. Then came the famous 
Kohn–Sham equations that reduced the Hohenberg–Kohn formulation to the prob-
lem of noninteracting electrons in an effective potential (somewhat analogous to 
the Hartree equations, for example). However, part of the potential, the exchange 
correlation part could only be approximately evaluated, e.g. in the local density 
approximation (LDA) – which assumed a locally homogeneous electron gas. A 
problem with DFT-LDA is that it is not necessarily clear what the size of the er-
rors are, however, the DFT is certainly a good way to calculate, ab initio, certain 
ground-state properties of finite electronic systems, such as the ionization energies 
of atoms. It is also very useful for computing the electronic ground-state proper-
ties of periodic solids, such as cohesion and stability. Excited states, as well as 
approximations for the exchange correlation term in N-electron systems continue 
to give problems. For a nice brief summary of DFT see Mattsson [A.13]. 

For quantum electrodynamics, a brief and useful graphical summary can be 
found at: http://www2slac.standford.edu/vvc/theory/feynman.html. We now pre-
sent a brief summary of the use of diagrams in many-body physics. 

In some ways, trying to do solid-state physics without Feynman diagrams is a lit-
tle like doing electricity and magnetism (EM) without resorting to drawing Fara-
day’s lines of electric and magnetic fields. However, just as field lines have limita-
tions in describing EM interactions, so do diagrams for discussing the many-body 
problem [A.1]. The use of diagrams can certainly augment one’s understanding. 

The distinction between quasi- or dressed particles and collective excitations is 
important and perhaps is made clearer from a diagrammatic point of view. Both 
are ‘particles’ and are also elementary energy excitations. But after all a polaron (a 
quasi-particle) is not the same kind of beast as a magnon (a collective excitation). 
Not everybody makes this distinction. Some call all ‘particles’ quasiparticles. Bo-
golons are particles of another type, as are excitons (see below for definitions of 
both). All are elementary excitations and particles, but not really collective excita-
tions or dressed particles in the usual sense. 

H.1  Propagators 

These are the basic quantities. Their representation is given in the next section. 
The single-particle propagator is a sum of probability amplitudes for all the ways 
of going from r1, t1 to r2, t2 (adding a particle at 1 and taking out at 2). 

The two-particle propagator is the sum of the probability amplitudes for all the 
ways two particles can enter a system, undergo interactions and emerge again. 

H.2  Green Functions 

Propagators are represented by Green functions. There are both advanced and re-
tarded propagators. Advanced propagators can describe particles traveling back-
ward in time, i.e. holes. The use of Fourier transforms of time-dependent propaga-
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tors led to simpler algebraic equations. For a retarded propagator the free propaga-
tor is: 

 
δεω

ω
i

1),(0 +−
=+

k
G k . (H.1) 

For quasiparticles, the real part of the pole of the Fourier transform of the sin-
gle-particle propagator gives the energy, and the imaginary part gives the width of 
the energy level. For collective excitations, one has a similar statement, except 
that two-particle propagators are needed. 

H.3  Feynman Diagrams 

Rules for drawing diagrams are found in Economu [A.5 pp. 251-252], Pines [A.22 
pp. 49-50] and Schrieffer [A.24 pp. 127-128]. Also, see Mattuck [A.14 p. 165]. 
There is a one-to-one correspondence between terms in the perturbation expansion 
of the Green functions and diagrammatic representation. Green functions can also 
be calculated from a hierarchy of differential equations and an appropriate de-
coupling scheme. Such approximate decoupling schemes are always equivalent to 
a partial sum of diagrams. 

H.4  Definitions 

Here we remind you of some examples. A more complete list is found in Chap. 4. 

Quasiparticle – A real particle with a cloud of surrounding disturbed particles 
with an effective mass and a lifetime. In the usual case it is a dressed fermion. 
Examples are listed below. 

Electrons in a solid – These will be dressed electrons. They can be dressed by 
interaction with the static lattice, other electrons or interactions with the vibrating 
lattice. It is represented by a straight line with an arrow to the right   if time 
goes that way 

Holes in a solid – One can view the ground state of a collection of electrons as a 
vacuum. A hole is then what results when an electron is removed from a normally 
occupied state. It is represented by a straight line with an arrow to the left  . 

Polaron – An electron moving through a polarizable medium surrounded by its 
polarization cloud of virtual phonons. 

Photon – Quanta of electromagnetic radiation (e.g. light) – it is represented by a 
wavy line  . 

Collective Excitation – These are elementary energy excitations that involve 
wave-like motion of all the particles in the systems. Examples are listed below. 
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Phonon – Quanta of normal mode vibration of a lattice of ions. Also often repre-
sented by wavy line. 

Magnon – Quanta of low-energy collective excitations in the spins, or quanta of 
waves in the spins. 

Plasmon – Quanta of energy excitation in the density of electrons in an interacting 
electron gas (viewing, e.g., the positive ions as a uniform background of charge). 

Other Elementary Energy Excitations – Excited energy levels of many-particle 
systems. 

Bogolon – Linear combinations of electrons in a state +k with ‘up’ spin and −k 
with ‘down’ spin. Elementary excitations in a superconductor. 

Exciton – Bound electron–hole pairs. 

Some examples of interactions represented by vertices (time going to the right): 

 An electron emitting a phonon 

A hole emitting a phonon. 
 

Diagrams are built out of vertices with conservation of momentum satisfied at 
the vertices. For example 

 

 
represents a coulomb interaction with time going up. 

H.5  Diagrams and the Hartree and Hartree–Fock Approximations 

In order to make these concepts clearer it is perhaps better to discuss an example that 
we have already worked out without diagrams. Here, starting from the Hamiltonian 
we will discuss briefly how to construct diagrams, then explain how to associate 
single-particle Green functions with the diagrams and how to do the partial sums 
representing these approximations. For details, the references must be consulted. 

In the second quantization notation, a Hamiltonian for interacting electrons 

 ∑∑ += jii ijViV , )(
2
1)(H , (H.2) 

with one- and two-body terms can be written as 

∑∑ += lijk lkijji ji aaaajkVjiaajVi ††
,

† )2()1()2,1()2()1(
2
1)1()1()1(H , (H.3) 
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where 

 ∫ ∗= iji dVjVi rrrr 3
111 )()()()1()1()1( φφ , (H.4) 

and 

 ∫ ∗∗= 2
3

1
3

2121 )()()2,1()()()2()1()2,1()2()1( rrrrrr ddVlkVji lkji φφφφ , (H.5) 

and the annihilation and creation operators have the usual properties 
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We now consider the Hartree approximation. We assume, following Mattuck 
[A.14] that the interactions between electrons is mostly given by the forward scat-
tering processes where the interacting electrons have no momentum change in the 
interaction. We want to get an approximation for the single-particle propagator 
that includes interactions. In first order the only possible process is given by a 
bubble diagram where the hole line joins on itself. One thinks of the particle in 
state k knocking a particle out of and into a state l instantaneously. Since this can 
happen any number of times, we get the following partial sum for diagrams repre-
senting the single-particle propagator. The first diagram on the right-hand side 
represents the free propagator where nothing happens (Mattuck [A.14 p. 89]10). 
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Using the “dictionary” given by Mattuck [A.14 p. 86], we substitute propagators 
for diagrams and get 
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Since the poles give the elementary energy excitations we have 

 ∑+=′ )occ.(l lklkkk Vεε , (H.7) 

                                                           
10 Reproduced with permission from Mattuck RD, A Guide to Feynman Diagrams in the 

Many-Body Problem, 2nd edn, (4.67) p. 89, Dover Publications, Inc., 1992. 
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which is exactly the same as the Hartree approximation (see (3.21)) since 

 ∑ ∫∫∑ ∗∗= l llkkl lklk VV 1
3

11222
3 d)2,1()()()()(d rrrrrr φφφφ . (H.8) 

It is actually very simple to go from here to the Hartree–Fock approximation – all 
we have to do is to include the exchange terms in the interactions. These are the 
“open-oyster” diagrams 

 

 
where a particle not only strikes a particle in l and creates an instantaneous hole, 
but is exchanged with it. Doing the partial sum of forward scattering and exchange 
scattering one has (Mattuck [A.14 p. 91]11): 
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Associating propagators with the terms in the diagram gives 
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From this we identify the elementary energy excitations as 

 ∑ −+=′ )occ.( )(l lkkllklkkk VVεε , (H.10) 

which is just what we got for the Hartree–Fock approximation (see (3.50)). 
The random-phase approximation [A.14] can also be obtained by a partial 

summation of diagrams, and it is equivalent to the Lindhard theory of screening. 

                                                           
11 Reproduced with permission from Mattuck RD, A Guide to Feynman Diagrams in the 

Many-Body Problem, 2nd edn, (4.76) p. 91, Dover Publications, Inc., 1992. 
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H.6  The Dyson Equation 

This is the starting point for many approximations both diagrammatic, and alge-
braic. Dyson’s equation can be regarded as a generalization of the partial sum 
technique used in the Hartree and Hartree–Fock approximations. It is exact. To 
state Dyson’s equation we need a couple of definitions. The self-energy part of a 
diagram is a diagram that has no incoming or outgoing parts and can be inserted 
into a particle line. The bubbles of the Hartree method are an example. An irre-
ducible or proper self-energy part is a part that cannot be further reduced into un-
connected self-energy parts. It is common to define 

Σ
 

as the sum over all proper self-energy parts. Then one can sum over all repetitions 
of sigma (∑k,ω) to get 

 

=
–1

1

– Σ
 

Dyson’s equation yields an exact expression for the propagator, 
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since all diagrams are either proper diagrams or their repetition. 
In the Hartree approximation 

≈Σ
 

and in the Hartree–Fock approximation 

≈Σ +
 

Although the Dyson equation is in principle exact, one still has to evaluate sigma, 
and this is in general not possible except in some approximation. 

We cannot go into more detail here. We have given accurate results for the high 
and low-density electron gas in Chap. 2. In general, the ideas of Feynman dia-
grams and the many-body problem merit a book of their own. We have found the 
book by Mattuck [A.14] to be particularly useful, but note the list of references at 
the end of this section. We have used some ideas about diagrams when we dis-
cussed superconductivity. 
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Phonon-phonon interaction  41, 113, 

219, 221 
Phosphorescence  579 
Photoconductivity  585, 597 
Photoelectric effect  172, 347 
Photoemission  172, 543, 578 
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Photon absorption  551 
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Point scatterers  32, 36 
Point transformations  17 
Poisson bracket relations  76 
Polar crystals  216, 516 
Polar solids  544 
Polaritons  569 
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Positrons  213 
Potential barrier  336, 338, 556, 605 
Potential gradients  307 
Primitive cells  17 
Primitive translation  17, 23, 84, 

269, 610, 655 
Principal threefold axis  26 
Projection operators  179 
Propagators  666 
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Short range forces  3 
Si  29, 191, 315, 318 
Similarity transformation  445 
Simple cubic cell  25 
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422 
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Spin coordinate  119, 373 
Spin degeneracy  602 
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Spin glass  353, 430, 454 
Spin Hamiltonian  373 
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417 
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Surface defects  587 
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process  255 
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Transition metals  265, 273, 639 
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Triplet state  373 
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Two-dimensional defect  590 
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Two-fold degeneracy  4, 150, 444 
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Valence band  590 
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van der Waals forces  4, 6 
Van Hove singularities  559 
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Variational principle  114 
Variational procedure  140 
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Virtual crystal approximation  320 
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X-rays  30, 96, 168 

Y 
YBa2Cu3O7  502, 503 

Z 
Zeeman energy  388 
Zener Breakdown  344, 556 
Zero point energy  5, 62 
Zincblende  295, 320, 323 
Zn  290 

                
 


	cover-image-large
	front-matter
	fulltext_001
	fulltext_002
	fulltext_003
	fulltext_004
	fulltext_005
	fulltext_006
	fulltext_007
	fulltext_008
	fulltext_009
	fulltext_010
	fulltext_011
	fulltext_012
	back-matter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




